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Overview Today: parton transport in anisotropic media

Why? How?

a

Use BDMPS-Z
technology

BDMPS-Z

to derive
effective
Kinetic theory
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X y - y T (BL + P Yy a )812,) W(Y,p) =
G(¥+5:x+3)d' (Y -5 x-3)) 5
2 2 2 2
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Allows to derive particle distribution in pert. theory V.Vip x / [K'B 86 6@ (q) — Vi, (q)] W(Y,p—q)
q DiODj;

Closed form expressions Allows to derive master evolution equations

Valid at all orders in gradients
Painful beyond leading order

No closed form solutions
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Two related questions: Whatis'the form of the particle distributionat late times?

Which effective equation rules the intermediate evolution?
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Transport approach to jet quenching

Parton evolution in the medium can be formulated in terms of an effective kinetic description

(00+ B9 ) fulpx,t) = ~CE{ )] - CL3(TY]

One important comment: K.T. description does not emerge from first principle QFT calculation

It has seen ample theory and pheno applications

Gluon emission rates
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Transport approach to jet quenching

An effective kinetic picture can also be derived starting from BDMPS-Z formalism

Simplest example: Momentum broadening

A

, N 4 2
At leading order we have the classical distribution P(k,t) = / e—ikx —Vig)t 7;6—'27
q
£r

One can check that taking the time derivative

0

8—LP(’€, L) = — /q V(q)P(k — (g, L) ((‘)L
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Transport approach to jet quenching

The key approximation taken is the assumption that the medium is isotropic

(6‘t | %) fa(p,t) = —C772[{ fi}]

but | promised Today: parton transport in anisotropic media |

To go beyond, one needs to introduce the parton Wigner function / density matrix

Generallzed Correlator from prewous talk

WL(Y,p) = / e~ PYTPOD Wy (X, po) x (G (Y cYxy ) Gt (Y Y.x_ _)>
maxapO 2 2 2
t =0.05 [fm)] t =25.0 [fm]
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Transport approach to jet quenching

We can compute  (G(Y +2;x+2)g" (v - £;x-Z)) order by order in gradients

With the resulting form, one can do the analog computation to:

>

O harmonic approximation (
or

orP® D =~ [VaPk-an

; a,%,) P(p,L) =0

To prove that the Wigner function satisfies Boltzmann-Lorentz-diffusion transport

Kinetic theory with local interaction in ¥

) W(Y,p) =0 (81§ with  ¢Y)~¢+Y -V§g ———> §4(Y)

p q(Y)
(81; -1- E -Vvy 1 3120

Note: Integrating over Y gives the usual diffusion equation
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Phenomenologically why is this result relevant?

The minimal replacement g(Y) form justifies usual approach to include geometry Q ~ T3 —> TB(Z‘, )_C))

Gradient Tomography of Jet Quenching in Heavy-Ion Collisions Jet-temperature anisotropy revealed through high-p, data
Yayun He,l Long-Gang Pang,l and Xin-Nian Wangl’z’ﬂ Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, and Magdalena Djordjevic*
! Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Institute of Physics Belgrade, University of Belgrade, Serbia
Central China Normal University, Wuhan 430079, China
? Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Pasi Huovinen

Institute of Physics Belgrade, University of Belgrade, Serbia and
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8fa kJ_ 8 fa . = of Superdense Fluids, University of Wroctaw, Poland

da 2 7’
' . p— —
ot i w Oor L 4 ka‘ fa(k, ,F) (Dated: March 1, 2022)

When does this stop being correct?

L

A clue: <P P (_i /O ar tproj¥” (7(7); T)) Pexp (@ /O L dﬂi’,mjv”(F(?)ﬁ))> = exp { — 0/ dr [1 4 IO ;F(T) . (Vp% + Vuzé%z)] Y (r(r) —7(r))

Asymmetric transverse momentum broadening in an inhomogeneous medium which IS usua”y assumed to take the all order form
Yu Fu,! Jorge Casalderrey-Solana,? and Xin-Nian Wang! 3 * 1 m}' 1
' Key Laboratory of Quark and Lepton Physics (MOE) & Institute of Particle Physics, T ~ . —+ A 2
Central China Normal University, Wuhan 430079, China N tT{W(r]_)W (7'2)} ~ exp{ n de' 4 \/5 q(R) r }
?Departament de Fisica Quantica i Astrofisica & Institut de Ciéncies del Cosmos (ICC), C T

Universitat de Barcelona, Marti 1 Franquées 1, 08028 Barcelona, Spain
3 Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, USA

A direct calculation shows it fails at the 2nd order
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Transport approach to jet quenching

To solve this question, we construct the evolution kernel accounting for

. | | |
In general, we have the convolution property N k kg 1® ”
f =1 = + A‘(q)oi + + I=7—¢€
k. k _
k—q |
| J J ! |

(G'(k, L + €; ko,0) G(k, L + €;ko,0)) = (G'(k,L+¢1,L)G(k,L+€1,L)) x (G'(I, L; ko, 0) G(I, L; ko, 0) )
11

No need to compute W, i.e. we can go to all order transport equation:

_ k? — k _ _ _
oW (k. k) = —i Wk, k) — / K(g,a; L)W, D)
q,q,l,l

K(q,q;1,1) = —(2m)* Cv(q)v(q) X {p(q ~q) 0P (k—q-1)sP(k—q-1) - %p(q +@) 8P (k-5 (k—q-g-1) —5p' (a+ 2P (k—q—g- 15 (k- i)}
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Transport approach to jet quenching

In this form it Is hard to digest: expand in gradients + harmonic approximation

k = 2r2C fq v?

| T :
Oy, - 82)WY, — V,V. / " @ v B
( L 5 4 0P (Y, p) iP X i _Hapiapjé (q) Vw(q)- W(Y,p— q)

l

Vigla) = 5 ({zqiqj o — v'v'] + w'aij} — (27)26@(q) / {2@1]- o — v''] + w'(sij})

Now the equation is sensitive scattering rate + corrections inherited from kinetic phases
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How large can such corrections be?

It is natural to look at gL = J p*W(p.,Y,L)
p.Y

A simple calculation gives

Coef. homogenous case
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Coef. due to anisotropy effects

with 7 = pk/(27%4) + 52 [ q*v*[q*v' [v]’

g (GeV>)

1.50

0.50

0.00

©

Vi _ *

I flx)=14+c-Ax I

L Copor O

W 001 aLc= ( / ) -8 200 GeV
- [10.1 p

— analytical (Vi=0)
| | | | | | | | | | | |
0 5 10 15 20 25 30
Qsz(GeVZ)

35

Brookhaven

National Laboratory

10



Conclusion and Outlook
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We constructed the all order in gradients transport equation for partons in anisotropic media

q(Y) 52

-V
(51, | PEY

: ag) W(Y.p)=ViVip x [

q L

K
31%5193'

6?)(q) - Vij(q)

W(Yap o q)

Can be implemented in current numerical models; it is half the story for medium response
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