Particle production as a function of the UE activity in small and large systems and search for jet-like modifications

Omar Vázquez Rueda for the ALICE collaboration

13th International workshop on Multiple Partonic Interactions at the LHC

The Underlying Event (UE)

- The UE: the particles, which do not originate from the primary hard parton-parton scattering:
 - MPIs, initial- and final-state radiation (ISR/FSR), beam remnants.

The UE observables

- Measured in events with leading charged particles.
- Defined in the angular region perpendicular to the leading charged particle.
- The UE is traditionally quantified by:
 - Particle number density: $N_{\rm ch}/\Delta\eta\Delta\varphi$
 - Summed transverse momentum density: $\sum p_{\mathrm{T}}/\Delta\eta\Delta\varphi$

Particle spectra and ratios are studied as a function of multiplicity in the transverse region: $N_{\rm T}$.

The ALICE apparatus in Run-1 and 2

The VZERO

- V0: forward scintillator hodoscopes, V0A $(2.8 < \eta < 5.1)$ and V0C $(-3.7 < \eta < -1.7)$.
- Triggering, background suppression and multiplicity estimation.

The TPC

- $|\eta| < 0.8$ and full azimuthal angle coverage.
- Vertex reconstruction, tracking and particle identification.

The TOF

- $|\eta| < 0.8$ and full azimuthal angle coverage.
- Particle identification.

UE observables in pp and p—Pb collisions at 5.02 TeV

$\langle N_{\rm ch}/\Delta\eta\Delta\phi\rangle$ in pp and p—Pb collisions

- Similar shape as a function of the $p_{\mathrm{T}}^{\mathrm{leading}}$ between both systems.
- The number density is independent of the leading particle for $p_{\rm T}^{\rm leading} \gtrsim 5~{\rm GeV}/c$.

$\langle N_{\rm ch}/\Delta\eta\Delta\phi\rangle$ in pp and p—Pb collisions

- The number density has contributions from the jet + UE.
- The number density as a function of the $p_{\rm T}^{\rm leading}$ in the toward region is similar between pp and p—Pb, however it increases faster in pp.
- PYTHIA and EPOS-LHC underestimate the number density in p—Pb.

Particle production across system size and searches for jet-like modifications in small systems at 5.02 TeV

- Leading particle: $8 < p_{\rm T}^{\rm leading} < 15~{\rm GeV}/c$ and $|\eta| < 0.8$.

- Leading particle: $8 < p_{\rm T}^{\rm leading} < 15~{\rm GeV}/c$ and $|\eta| < 0.8.$
- The $p_{\rm T}$ spectra is measured in each region as a function of the relative transverse activity, $R_{\rm T}$.

$$R_{\rm T} = N_{\rm T} / \langle N_{\rm T} \rangle$$

Eur.Phys.J. C76 (2016) 299 Phys. Rev. D 104, 016017 Phys. Rev. D 96, 114019

- Leading particle: $8 < p_{\rm T}^{\rm leading} < 15~{\rm GeV}/c$ and $|\eta| < 0.8$.
- The $p_{\rm T}$ spectra is measured in each region as a function of the relative transverse activity, $R_{\rm T}$.

$$R_{\rm T} = N_{\rm T} / \langle N_{\rm T} \rangle$$

- The jet-like yields are quantified by I_X as a function of $\langle N_{\rm T} \rangle$ and multiplicity.
- Jet-like yields: the yield in the transverse region is subtracted from the toward and away (it is assumed that the UE is flat in $\Delta \varphi$).

$$I_X = \frac{\left(\mathrm{d}N_\mathrm{ch}^{\mathrm{t,a}} / \mathrm{d}p_\mathrm{T} - \mathrm{d}N_\mathrm{ch}^\mathrm{T} / \mathrm{d}p_\mathrm{T} \right) |_X}{\left(\mathrm{d}N_\mathrm{ch}^{\mathrm{t,a}} / \mathrm{d}p_\mathrm{T} - \mathrm{d}N_\mathrm{ch}^\mathrm{T} / \mathrm{d}p_\mathrm{T} \right) |_{\mathrm{pp,MB}}}$$

$$X = \mathrm{pp, p-Pb \ and \ Pb-Pb}$$

Charged particle production v.s. R_{T}

Charged particle production v.s. $R_{\rm T}$

Charged particle production v.s. R_{T}

$I_{\rm X}$ as a function of $\langle N_{\rm T} \rangle$ (away region)

- Strong suppression of the jet-like yields with increasing centrality in Pb—Pb.
 - Medium effects: jetquenching.
- The jet-like yields are consistent with unity in pp and p—Pb collisions.
 - No indication of jet-like modifications in small systems.

Identified particle production as a function of the event activity in pp collisions at 13 TeV

- Leading particle: $5 \le p_{\rm T}^{\rm leading} < 40~{\rm GeV}/c$ and $|\eta| < 0.8.$
- The $p_{\rm T}$ -differential particle ratios are measured in each region at mid-pseudo rapidity.
- The particle ratios are reported as a function of $R_{\rm T}$.

Particle ratios: toward region

Particle ratios: toward region

Low-UE

 It is clear what works in the models (hard processes) and what they fail at (UE).

Particle ratios: transverse region

Particle ratios: transverse region

• While PYTHIA describes the trends in the high-UE events, EPOS-LHC predicts a splitting that is not observed in data.

Low-UE

Summary

- The number density in the transverse region in pp and p—Pb collisions is independent of the scale of the hard probe for $p_{\rm T}^{\rm leading} \gtrsim 5~{\rm GeV}/c$ (UE plateau).
- Measurements of the I_X across system size show no indications of jet-like modifications in small systems.
- $R_{
 m T}$ allows to study the particle fractions in low-UE environments.
 - PYTHIA and EPOS-LHC describe reasonably the measurements.

Backup

$N_{\rm ch}/\Delta\eta\Delta\varphi$ in the jet-like signal

- The UE activity in the transverse region is subtracted from the toward region.
- The particle density in the jet-like signal increases in the entire $p_{\mathrm{T}}^{\mathrm{leading}}$ range.
- Remarkable similarity between pp and p—Pb for $p_{\rm T}^{\rm leading} \gtrsim 8~{\rm GeV}/c$ (fragmentation is not modified).