News on the Cluster Model

Simon Plätzer Institute of Physics — NAWI, University of Graz Particle Physics — University of Vienna

At the MPI@LHC workshop Madrid/Online | 17 November 2022

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

AUTHOR INFORMATION **Corresponding Authors** Thomas Rath - Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Graz 8010, Austria; o orcid.org/0000-0002-4837-7726; Email: thomas.rath@tugraz.at

Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction

Sarah Bierbaumer, Dr. Luca Schmermund, Alexander List, Dr. Christoph K. Winkler 🔀 Dr. Silvia M. Glueck Prof. Dr. Wolfgang Kroutil

TU Graz

QCD & Event Generators

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

 $d\sigma \sim L \times d\sigma_H(Q) \times PS(Q \rightarrow \mu) \times MPI \times Had(\mu \rightarrow \Lambda) \times ...$

The Herwig hadronization model

Coherent shower evolution triggers universal cluster spectrum: pre-confinement.

[Herwig++ I.0 release — Gieseke et al. JHEP 02 (2004) 005]

The Herwig hadronization model

- Clusters come as "mesonic" and "baryonic". The latter are only produced through beam remnants or colour reconnection.
- Cluster fission happens above a mass threshold: ~ longitudinal decay into smaller mass clusters.
- When light enough they decay into hadrons: driven by quark content, phase space, spin degeneracy.

Motivation

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

[Bellm, Lönnblad, Plätzer, Prestel, Samitz, Siodmok, Hoang — Les Houches 2017]

Motivation

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

only constrained by tuning?

Hadronization corrections in (massive) thrust obey R evolution:

cutoff dependence of hadronization cutoff dependence of heavy quark $\tau_{\rm peak}(Q_0) = \tau_{\rm peak}(Q'_0) - \frac{1}{Q} \left(16C_F - 8\pi C_F \frac{m}{Q} \right) \int_{Q'_0}^{Q_0} \mathrm{d}R \frac{\alpha_s(R)}{4\pi}$

[Hoang, Plätzer, Samitz — JHEP 1810 (2018) 200]

Colour evolution equations from projection onto hadrons

$$\partial_{S} \mathbf{A}_{n} = \mathbf{\Gamma}_{n,S} \mathbf{A}_{n} + \mathbf{A}_{n} \mathbf{\Gamma}_{n,S}^{\dagger} - \sum_{s \ge 1} \alpha_{S}^{s} \mathbf{R}_{S,n}^{(s)}$$
$$\partial_{S} \mathbf{S}_{n} = -\tilde{\mathbf{\Gamma}}_{S,n}^{\dagger} \mathbf{S}_{n} - \mathbf{S}_{n} \tilde{\mathbf{\Gamma}}_{S,n} + \sum_{s \ge 1} \alpha_{S}^{s} \int \tilde{\mathbf{H}}_{S,n}^{\dagger}$$

[Plätzer – arXiv:2204.06956]

 $\partial_{S} \mathbf{A}_{n} = \mathbf{\Gamma}_{n,S} \mathbf{A}_{n} + \mathbf{A}_{n} \mathbf{\Gamma}_{n,S}^{\dagger} - \sum \alpha_{S}^{s} \mathbf{R}_{S,n}^{(s)} \mathbf{A}_{n-s} \mathbf{R}_{S,n}^{(s)\dagger}$ $\partial_{S}\mathbf{S}_{n} = -\tilde{\mathbf{\Gamma}}_{S,n}^{\dagger}\mathbf{S}_{n} - \mathbf{S}_{n}\tilde{\mathbf{\Gamma}}_{S,n} + \sum_{s\geq 1}\alpha_{S}^{s}\int\tilde{\mathbf{R}}_{S,n+s}^{(s)\dagger}\mathbf{S}_{n+s}\tilde{\mathbf{R}}_{S,n+s}^{(s)}\prod_{i=n+1}^{n+s}[\mathrm{d}p_{i}]\tilde{\delta}(p_{i})$ Reproduce key features of "high energy

end" of cluster hadronization.

 $\partial_{S} \mathbf{A}_{n} = \mathbf{\Gamma}_{n,S} \mathbf{A}_{n} + \mathbf{A}_{n} \mathbf{\Gamma}_{n,S}^{\dagger} - \sum \alpha_{S}^{s} \mathbf{R}_{S,n}^{(s)} \mathbf{A}_{n-s} \mathbf{R}_{S,n}^{(s)\dagger}$ $\partial_{S} \mathbf{S}_{n} = -\tilde{\mathbf{\Gamma}}_{S,n}^{\dagger} \mathbf{S}_{n} - \mathbf{S}_{n} \tilde{\mathbf{\Gamma}}_{S,n} + \sum_{i} \alpha_{S}^{s} \int \tilde{\mathbf{R}}_{S,n+s}^{(s)\dagger} \mathbf{S}_{n+s} \tilde{\mathbf{R}}_{S,n+s}^{(s)} \prod_{i=1}^{n} [\mathrm{d}p_{i}] \tilde{\delta}(p_{i})$ s>1Reproduce key features of "high energy

end" of cluster hadronization.

Cornering models

constrain by cutoff response

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

constrain by tuning

Matching the cluster model to the shower

Soft limit of shower needs to reproduce UV limit of hadronization

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

figures by Daniel Samitz

Gluon splitting

Default choice versus mass distribution from infrared continued splitting function

$$\mathrm{d}P(g \to q\bar{q}) \sim \frac{\mathrm{d}q^2}{q^2} \alpha_s(q^2) \Big(1 - 2z(1-z) + \frac{2m_s^2}{q^2}\Big)\Big(1 - 2z(1-z) + \frac{2m_s^2}{q^2}\Big)\Big)$$

C

Mb/NbN/1

Embed infrared continued parton branchings to also obtain cluster mass spectra

tuned by P_{split} typically very steep

tuned by infrared shower scale

Tuning and hadronization corrections

Significantly different shapes of hadronization corrections

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

C parameter parton versus hadron level

Cutoff response

Gluon splitting and cluster fission drivers pick up cutoff dependence.

Significantly reduced sensitivity to other cluster parameters.

The issue of constituent masses

Constituent masses in kinematic reconstruction.

Reshuffle globally at beginning of hadronization.

Reshuffle colour singlets at beginning of hadronization.

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

First new results

Tuning campaign underway ...

C parameter

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

rapidity wrt thrust

EEC

Summary

We must understand how hadronization models respond to shower variations they do not live in isolation, and we shouldn't be tuning the shower cutoff.

- Obvious in hadronization corrections from factorized cross sections in SCET: Soft functions do obey R evolution.
- Obvious also from analysing evolution equations in colour space, which contain (dipole) showers as limiting algorithms.

Both paradigms can and should be used to construct models at their "ultraviolet" end.

We are currently pursuing this for the Herwig cluster model — alongside many other developments like infrared continuations of the strong coupling and related.

Dark cluster hadronization

Current hadronization module is too deeply rooted in SM QCD, and otherwise lacks flexibility.

Construction site of Vienna's new U5 subway line (kurier.at) Not just a new line, bridging a gap ... UI,2,3,4 and 6 do exist ...

Balance pressure of excavation walls ...

Dig deep and rebuild — in light of models beyond SU(N), and deeper insight on the latter.

UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

Herwig 7.3 coming soon ...

