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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™
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Hadronization;
one of the least understood elements of MCEG
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Non-perturbative QCD

Hadronization:

STRING Hadronization CLUSTER Hadronization
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-> Increased control of perturbative corrections = more often the precision of LHC

measurements is limited by MCEG's non-perturbative components, such as hadronization
-> Hadronization (phenomenological models with many free parameters ~ 30 parameters)
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Non-perturbative QCD

Hadronization:

Early 1980's Early 2020's
(since then very little development)

(lot of progress in ML)
STIRING Hadronization CLUSTER Hadronization

T e W
ML

-> Increased control of perturbative corrections = more often the precision of LHC
measurements is limited by MCEG's non-perturbative components, such as hadronization.

-> Hadronization (phenomenological models with many free parameters ~ 30 parameters)

-

Hadronization is a fitting problem ML is proved to be well suited for such a problems.

Idea of using Machine Learning (ML) to improve hadronization.
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-> Increased control of perturbative corrections = more often the precision of LHC
measurements is limited by MCEG's non-perturbative components, such as hadronization.
Hadronization (phenomenological models with many free parameters ~ 30 parameters)
Hadronization is a fitting problem ML is proved to be well suited for such a problems.

v

Idea of using Machine Learning (ML) to improve hadronization.

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF)

Hadronization is closely related to so-called fragmentation functions (FF). Early on, FFs were
considered the counterpart of PDFs. While PDFs are understood as probability densities for finding
partons, with a given momentum, inside colour-neutral particles, FFs (or hadronization) were
understood as probability densities for finding colour-neutral particles from partons.

NINPDF

MPI@QLHC 2022 Andrzej Siodmok



Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

ML hadronization
1st step: generate kinematics of a cluster decay:

How?
Use Generative Adversarial Networks (GAN)
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.
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He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.
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Adversarial Networks

|

DeepMind  @DeepMind - Dec 6, 2018 W

@ The full peer-reviewed @sciencemagazine evaluation of #AlphaZero
is here - a single algorithm that creatively masters chess, shogi and
Go through self-play deepmind.com/blog/alphazero...

Demis Hassabis
CBE FRS FRENng FRSA

By playing games against itself, AlphaGo Zero surpassed the strength of AlphaGo Lee in three days by winning 100 games to O.
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https://en.wikipedia.org/wiki/AlphaGo_Lee

Adversarial Networks

— 11 You Retweeted

OpenAl @
@OpenAl

We trained a neural network that S——
solved two problems from the Skl ki
International Math Olympiad.
openai.com/blog/formal-ma...

(a* b+b*xc+c * a)r*3 =
(a"2 + a * b + b"2) % (b”"2 + b %
(cr2 & ¢ x a + ar2)

let u : euclidean_space R (fin 2) := ![a, bl,
let v : euclidean_space R (fin 2) := ![b, cl,

have he := real inner_mul _inner_self le u v,

19:47 - 02 Feb 22 - Twitter Web App

99 Retweets 32 Quote Tweets 564 Likes

MPI@QLHC 2022 Andrzej Siodmok



Generative Adversarial Network (GAN)

thispersondoesnotexist.com
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Generative Adversarial Network (GAN)

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How? Generative Adversarial

s Network
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Training data:

ris

eTe™ collisions at T(E, Puy Pys De)
V5 = 91.2 GeV

"’TO(E’ pl‘t py- pZ)

Cluster (E, pz, py, D=)

Pert = O/1 memory of quarks direction
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator
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Wasserstein distance

The Wasserstein distance
e For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
e EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = min B(y)
YEIl

e Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example

5th Inter-experiment Machine Learning Workshop



e Data normalization:
cluster’s four vector and angular variables are scaled to be between -1 and 1
(tanh activation function as the last layer of the Generator)

e Discriminator and the Generator are trained separately and alternately by two
independent Adam optimizers with a learning rate of 1074, for 1000 epochs

—— Discriminator Loss /2 [0.6
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e The best model for events with partons of Pert = O, is found at the epoch
849 with a total Wasserstein distance of 0.0228.
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Integration into Herwig

Training Event generation
s N N

C

@ python

ONNX
RUNTIME
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Low-level Validation o
(similar to training data) m
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Pert = 0 (no memory of quark kinematics)
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Low-level Validation

o)
(beyond training data different energy) m
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Low-level Validation
(beyond training data different hadrons)

&

MPI@QLHC 2022 Andrzej Siodmok

_+_

/3

Kaons

Lambda

1/oy dog /dy

1/0, doy /dy

0.1

0.06

0.05

0.04

0.03

0.02

0.01

hi

e~ collisions at
91.2 GeV

Pseudorapidity distribution of kaon multiplicity

T T T T I T L. T l T T T T I T 1 T 1 ] T 1 1 V. ol
= w2 74 —
- +— Hy+HADML n
: L 1 I 'l ] 1 1 1 1 :
0 4 5
Ul
Pseudorapidity distribution of A multiplicity
T T T T l T T T T ! T T T T I T T T T ] T T T T
C oy et i by ]
E H7+HADML E
: A A 1_] 1 | 1 :
0 1 E 3 4 5
U

VS

1/og do/dpy

1/0y do/dpy

10

10

10 3

10

10

10

10

10

10

.

n

h kinematic variables

h2

Transverse momentum distribution of kaon

—— T T T I T T T T I T T T T I T T T T [ T T T T =
e - I,_l7 =1
3 H7+HADML 3
- _‘Tb\ -=
L s T .
s VAR u%: | E
3 M o E
: M -
S T oty g gy e 2 1 1 T T
0 10 20 30 50
pr [GeV]
Transverse momentum distribution of A
T T T T I T T T T | T T T T ] T T T T l T T T T
—— Hy —
E #— Hz+HADML =
C | ]
:—I 1 1 1 | | "; l L 1 1 l‘-—5
0 40 50

pr [GeV]



Full-event Validation
(Full events using HADML integrated into Herwig 7)
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Summary and Outlook

Summary

We presented first step on the path towards a neural network-based hadronization model

We emulated cluster hadronization model from Herwig with a GAN (HADML) 0

T
HADML is designed to reproduce the two-body decay of clusters into pions

The kinematic properties of other hadrons are emulated using

the pion model and conservation of energy. m
HADML is able to reproduce Herwig's light cluster decays

Integrated with the full Herwig simulation is able to reproduce results from LEP data

Outlook

The ultimate goal of is to train the ML model directly on data to improve hadronization models
Number of technical and methodological step needed:

Directly accommodate multiple hadron species with their relative probabilities

Heavy cluster decays

Hyperparameter optimization, including the investigation of alternative generative models
Methodological innovation is required to explore how to tune the model to data

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization

2 2 2

] . : bl
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Advertisement

2 postdoc in ML/HEP positions openings

JAGIELLONIAN UNIVERSITY
IN KRAKOW

Nicolaus Copernicus
XVI w. - w zbiorach Collegium Maiu

If you are interested please contact me:
andrzej@cern.ch
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Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to
maximize it:

E, [log(D(x))] + E.[log(1 — D(G(2)))]

In this function:

D(x) is the discriminator's estimate of the probability that real data instance x is real.

Ey is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) isthe discriminator's estimate of the probability that a fake instance is real.

E, is the expected value over all random inputs to the generator (in effect, the expected value over all generated

fake instances G(z)).

» The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is
equivalent to minimizing log(1 - D(G(z))) .
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AlphaGo

AlphaGo's victory against Lee Sedol was a major milestone in artificial intelligence research.

Go had previously been regarded as a hard problem in machine learning that was expected to be out of
reach for the technology of the time.

Most experts thought a Go program as powerful as AlphaGo was at least five years away;some experts
thought that it would take at least another decade before computers would beat Go champions. Most

observers at the beginning of the 2016 matches expected Lee to beat AlphaGo.
Netflix document
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Wasserstein distance

Q Xq A “moving plan” is a matrix

| 1

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

BO) = D ¥(pxg) 1% —

XpXq

Earth Mover’s Distance:
W(P,Q) = minB(y)
y€Ell

moving plan y The best plan
All possible plan I1

Iulh__fji
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