

13th International workshop on Multiple Partonic Interactions at the LHC MPI@LHC 2022 IFT UAM/CSIC Madrid | 14-18 Nov

Double Vector Meson in photon - induced interactions at the LHC

Victor P. Goncalves

ITP/WWU/Münster/Germany and IFM/UFPel/Brazil and IMP/Chinese Academy of Sciences/China

barros@ufpel.edu.br

Institute of Modern Physics

LHC = Photon collider

1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$ 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

LHC = Photon collider

b>R₁+R₂

1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$ 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

Center of mass energies

LHC	pp	$W_{\gamma p} \lesssim 8390~{ m GeV}$	$W_{\gamma\gamma} \lesssim 4504~{ m GeV}$
LHC	pPb(Ar)	$W_{\gamma A} \lesssim 1500(2130)\;{\rm GeV}$	$\lesssim 260(480)~{ m GeV}$
LHC	PbPb	$W_{\gamma A} \lesssim 950~{ m GeV}$	$W_{\gamma} \lesssim 160~{ m GeV}$
HERA	ep	$W_{\gamma p} \lesssim 200~{ m GeV}$	-

Photoproduction in pp, pA and AA collisions at LHC probes a unexplorated regime of photon - hadron center of mass energies.

Probing the QCD dynamics at high energies in photon - induced interactions at the LHC

Exclusive vector meson production in photon-hadron interactions:

* Sensitive to the description of the QCD dynamics:

* Sensitive to the description of the spatial distribution of the gluons in the target;

 $\frac{d\sigma \,\left[h_1 + h_2 \to h_1 \otimes V \otimes h_2\right]}{d^2 b dy} = \left[\omega N_{h_1}(\omega, b) \,\sigma_{\gamma h_2 \to V \otimes h_2}\left(\omega\right)\right]_{\omega_L} + \left[\omega N_{h_2}(\omega, b) \,\sigma_{\gamma h_1 \to V \otimes h_1}\left(\omega\right)\right]_{\omega_R}$

^aVPG, Bertulani, PRC65, 054905 (2002)

LHC = Photon collider

b>R₁+R₂

1. γh Processes: $\sigma(h_1 h_2 \to X) = n_h(\omega) \otimes \sigma^{\gamma h \to X}(W_{\gamma h})$ 2. $\gamma \gamma$ Processes: $\sigma(h_1 h_2 \to X) = n_1(\omega) \otimes n_2(\omega) \otimes \sigma^{\gamma \gamma \to X}(W_{\gamma \gamma})$

Center of mass energies

LHC	pp	$W_{\gamma p} \lesssim 8390~{ m GeV}$		$W_{\gamma\gamma} \lesssim 4504~{ m GeV}$	
LHC	pPb(Ar)	$W_{\gamma A} \lesssim 1500(2130)~{ m GeV}$	/	$W_{\gamma\gamma} \lesssim 260(480)~{ m GeV}$	
LHC	PbPb	$W_{\gamma A} \lesssim 950~{ m GeV}$		$W_{\gamma\gamma} \lesssim 160~{ m GeV}$	
HERA	ep	$W_{\gamma p} \lesssim 200~{ m GeV}$		—	

LHC allow us to probe the particle production by photon – photon interactions in a energy range unexplorated by LEP and higher than that proposed for the ILC and FCC e+e-.

Probing the QCD dynamics at high energies in photon - induced interactions at the LHC

Double vector meson in photon - photon interactions:

Eur. Phys. J. C 46, 219–224 (2006) Digital Object Identifier (DOI) 10.1140/epjc/s2006-02473-2

THE EUROPEAN PHYSICAL JOURNAL C

The QCD pomeron in ultraperipheral heavy ion collisions: V. Double vector meson production in the BFKL approach

V.P. Gonçalves¹, M.V.T. Machado^{2,3,a}, W.K. Sauter³

Double vector meson production in $\gamma\gamma$ interactions at hadronic colliders

V. P. Gonçalves^{1,2,a}, B. D. Moreira³, F. S. Navarra³

Probing the QCD dynamics at high energies in photon - induced interactions at the LHC

Double vector meson in photon - photon interactions:

(*) Values em nb.

In this talk:

Double vector meson in photon - hadron interactions via the DOUBLE SCATTERING MECHANISM (DSM):

(*) VPG, Moreira, Navarra, EPJC76, 388 (2016) and Azevedo, VPG, Moreira, arXiv:2210.04861 [hep-ph]

Basic Ideas:

* Because the cross sections for the vector meson photoproduction and the photon fluxes are so large, the probability of having multiple interactions in a single nucleus-nucleus encounter is nonnegligible;

 First estimates performed by Klein/Nystrand (1999) and Kluzek-Kawenda/Szczurek (2013) demonstrated that the associated cross sections for the double vector meson production are large and that a experimental analysis could be feasible;

* Neglecting correlations, the pair production probability can be expressed in terms of the single production probability, with the associated differential cross section being given by:

$$\frac{\mathrm{d}^2 \sigma_{h_1 h_2 \to h_1 V_1 V_2 h_2}}{\mathrm{d}y_1 \mathrm{d}y_2} = \mathcal{C} \int_{b_{\min}} \frac{\mathrm{d}\sigma \ [h_1 + h_2 \to h_1 V_1 h_2]}{\mathrm{d}^2 b \mathrm{d}y_1} \times \frac{\mathrm{d}\sigma \ [h_1 + h_2 \to h_1 V_2 h_2]}{\mathrm{d}^2 b \mathrm{d}y_2} \ \mathrm{d}^2 b$$

C is equal to 1 (1/2) for $V_1 \neq V_2$ ($V_1 = V_2$)

Main formulae:

$$\frac{d\sigma \ [PbPb \to Pb \otimes V \otimes Pb]}{d^2bdy_V} = \omega N_{Pb}(\omega, b) \,\sigma_{\gamma Pb \to V \otimes Pb} \left(\omega\right)$$

One has that:

$$\sigma(\gamma Pb \to VPb) = \int_{-\infty}^{0} \frac{d\sigma}{dt} dt = \frac{1}{16\pi} \int_{-\infty}^{0} |\mathcal{A}_{T}^{\gamma Pb \to VPb}(x, \Delta)|^{2} dt$$

In the dipole picture, the scattering amplitude is given by

$$\mathcal{A}_T^{\gamma Pb \to VPb}(x, \Delta) = i \int dz \, d^2 \boldsymbol{r} \, d^2 \boldsymbol{b}_A e^{-i[\boldsymbol{b}_A - (1-z)\boldsymbol{r}]} \boldsymbol{\Delta} \, (\Psi^{V*} \Psi)_T \, 2\mathcal{N}_{Pb}(x, \boldsymbol{r}, \boldsymbol{b}_A)$$

In our analysis, one has assumed the Gaus-LC model for the overlap function and the Glauber - Gribov formula for the dipole - nucleus scattering amplitude:

$$\mathcal{N}_A(x, \boldsymbol{r}, \boldsymbol{b}_A) = 1 - \exp\left[-\frac{1}{2}\sigma_{dp}(x, \boldsymbol{r}^2)T_A(\boldsymbol{b}_A)\right]$$

Double vector meson production at hadronic colliders: Photon - photon × Double scattering mechanism

Double p production:

Double J/Ψ production:

Double vector meson production at hadronic colliders: Photon - photon × Double scattering mechanism

 Table 1
 Total cross sections for the double vector meson production considering the double-scattering and two-photon mechanisms and different center-of-mass energies considering the full kinematical range covered by the LHC

Final state	Mechanism	$\frac{PbPb}{\sqrt{s}} = 2.76 \text{TeV}$	$\frac{PbPb}{\sqrt{s} = 5.5 \text{ TeV}}$	$pPb \\ \sqrt{s} = 5 \text{ TeV}$	$\frac{pp}{\sqrt{s}} = 7 \mathrm{TeV}$	$\frac{pp}{\sqrt{s}} = 14 \mathrm{TeV}$
$J/\Psi J/\Psi$	DSM $\gamma\gamma$ DSM	402.301 nb 235.565 nb 21.150 mb	1054.951 nb 658.589 nb 29.421 mb	28.473 pb 310.194 pb 702.505 pb	3.223×10^{-4} pb 0.2412 pb 4.354 pb	7.256×10 ⁻⁴ pb 0.4793 pb 7.083 pb
βp	$\gamma\gamma$	1.389 mb	1.973 mb	536.432 nb	182.442 pb	237.006 pb
$ \begin{array}{c} 6 \\ - \\ 4 \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5 0.45 0.4 0.3 0.3 0.3 0.25 0.2 0.2 0.2 0.15 0.1 0.05	$ \begin{array}{c} 6 \\ 4 \\ 2 \\ 7 \\ 7 \\ -2 \\ -4 \\ -6 \\ -6 \\ \end{array} $	1 0.00
-6 -4	-2 0 2 4	-8 6	-8 -6 -4 -2 0 2	4 6 8	-6 -4 -2 0	2 4 6
	¥1		¥1		y _o	, ,

Fig. 4 Double differential rapidity distribution for the $J/\Psi J/\Psi$ (*left panel*), $\rho\rho$ (*middle panel*) and $\rho J/\Psi$ (*right panel*) production in γh interactions at *PbPb* collisions ($\sqrt{s} = 5.5$ TeV) by the double-scattering mechanism

Double vector meson production at hadronic colliders: Photon - photon × Double scattering mechanism

 Table 1
 Total cross sections for the double vector meson production considering the double-scattering and two-photon mechanisms and different center-of-mass energies considering the full kinematical range covered by the LHC

Final state	Mechanism	$\frac{PbPb}{\sqrt{s}} = 2.76 \text{TeV}$	$\frac{PbPb}{\sqrt{s}} = 5.5 \text{TeV}$	pPb $\sqrt{s} = 5 \text{ TeV}$	$\frac{pp}{\sqrt{s}} = 7 \mathrm{TeV}$	$\frac{pp}{\sqrt{s}} = 14 \mathrm{TeV}$
$J/\Psi J/\Psi$	DSM	402.301 nb	1054.951 nb	28.473 pb	$3.223 \times 10^{-4} \text{ pb}$	$7.256 \times 10^{-4} \text{ pb}$
	γγ	235.565 nb	658.589 nb	310.194 pb	0.2412 pb	0.4793 pb
ρρ	DSM	21.150 mb	29.421 mb	702.595 nb	4.354 pb	7.083 pb
	γγ	1.389 mb	1.973 mb	536.432 nb	182.442 pb	237.006 pb
$ \begin{array}{c} 6 \\ - \\ 4 \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.008 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.006 0.007 0.006 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.
-6 -4	-2 0 2 4	6 -	3 -6 -4 -2 0 2	4 6 8	-6 -4 -2 0	2 4 6
	У1		У1		y _o)

Fig. 4 Double differential rapidity distribution for the $J/\Psi J/\Psi$ (*left panel*), $\rho\rho$ (*middle panel*) and $\rho J/\Psi$ (*right panel*) production in γh interactions at *PbPb* collisions ($\sqrt{s} = 5.5$ TeV) by the double-scattering mechanism

Double vector meson production in PbPb Collisions via the double scattering mechanism

Associated Φ and J/Ψ production in PbPb Collisions

	LHC ($\sqrt{s} = 5.02$ TeV)	LHC ($\sqrt{s} = 5.5$ TeV)	FCC ($\sqrt{s} = 39$ TeV)
Full rapidity range	65.60	72.00	365.00
$-2.5 \le y_{\phi,J/\Psi} \le 2.5$	33.60	35.50	80.30
$2.0 \le y_{\phi, J/\Psi} \le 4.5$	2.30	2.70	18.70

TABLE I: Total cross sections in μb for the associated ϕ and J/Ψ production in ultraperipheral *PbPb* collisions at the LHC and FCC energies considering distinct rapidity ranges for the mesons in the final state.

Associated Φ and J/Ψ production in PbPb Collisions

	LHC ($\sqrt{s} = 5.02$ TeV)	LHC ($\sqrt{s} = 5.5$ TeV)	FCC ($\sqrt{s} = 39$ TeV)
Full rapidity range	65.60	72.00	365.00
$-2.5 \le y_{\phi,J/\Psi} \le 2.5$	33.60	35.50	80.30
$2.0 \le y_{\phi, J/\Psi} \le 4.5$	2.30	2.70	18.70

TABLE I: Total cross sections in μb for the associated ϕ and J/Ψ production in ultraperipheral PbPb collisions at the LHC and FCC energies considering distinct rapidity ranges for the mesons in the final state.

Summary

- Photon induced interactions can be used to constrain the physics in a unexplorated energy regime.
- ✓ In recent years, several studies have analyzed the single vector meson photoproduction in photon hadron interactions at the RHIC, LHC and FCC.
- However, complementary studies can be performed through the analysis of the double vector meson production in photon - photon and photon - hadron interactions.
- ✓ Our results indicate that the double scattering mechanism dominates in PbPb collisions and that a future experimental analysis of this process is feasible.

Summary

- Photon induced interactions can be used to constrain the physics in a unexplorated energy regime.
- ✓ In recent years, several studies have analyzed the single vector meson photoproduction in photon hadron interactions at the RHIC, LHC and FCC.
- However, complementary studies can be performed through the analysis of the double vector meson production in photon - photon and photon - hadron interactions.
- ✓ Our results indicate that the double scattering mechanism dominates in PbPb collisions and that a future experimental analysis of this process is feasible.

Thank you for your attention: