Strangeness enhancement across systems in Pythia8/Angantyr

Rope hadronization in Lund strings

Smita Chakraborty

smita.chakraborty@thep.lu.se

15th November 2022

 13^{th} International Workshop on Multiple Partonic Interactions at the LHC IFT - UAM/CSIC, Madrid

Motivation for exploring Lund string interactions

- Observing Quark Gluon Plasma-like signatures within the Lund string model
- Observations such as:
 - Imprint of initial geometric anisotropy in the final state particles
 - ⇒ correlation between particles separated in large units of rapidity
 - Modification of large Q^2 processes in small and large systems
 - ⇒ Jet quenching &
 - ⇒ Change in production yields of heavy flavours, e.g. strange hadrons

Builds up on the **Angantyr** framework for heavy-ions (*See L Lönnblad's talk*, $15^{th}Nov$, 17:00)

Previous and current developments in the Lund class of MCEGs

 Λ/K_s^0 ratio in DIPSY compared to CMS data for p-p at $\sqrt{s}=7$ TeV (JHEP 2015, 148 (2015))

What's new:

- GLEIPNIR: ropes (SciPost Phys. 13 (2022) 2, 023, Physics Letters B, 137571(2022) 0370-2693), shoving (JHEP 03 (2021) 270) & colour reconnection for all systems
- Interplay of string shoving, rope hadronization: work in progress SC & L. Lönnblad, *Impact of string interactions on the space-time evolution of hadronic vertices*, **2207.14186**

A pair of string pieces in the parallel frame

The parallel frame

^{*} z axis is transverse to the strings, and is not the beam axis.

[†]Construction of the parallel frame: C. Bierlich, SC, G. Gustafson and L. Lönnblad, *Setting the string shoving picture in a new frame*, JHEP **03** (2021), 270

Formulation of rope hadronization

- Wider colour flux tubes when two strings overlap in co-ordinate space
 - \implies **Higher colour multiplets** $\{p,q\}$ form at the ends of colour ropes
 - \implies Resultant higher effective string tension $\kappa_{\rm eff}$
- $\circ~$ When a string in a rope breaks \rightarrow transition to a lower colour multiplet
 - \rightarrow higher energy is **released**
- o During breakup of individual string in the rope, this energy is available for tunnelling
 - \rightarrow higher yield of strange quarks a.k.a. strangeness enhancement

 $^{^{\}dagger}$ C. Bierlich, G. Gustafson, L. Lönnblad, et al., J. High Energ. Phys. 2015, 148 (2015).

Resultant higher effective string tension κ_{eff}

o From lattice calculations:

Tension in an isolated static rope is proportional to the quadratic Casimir operator C2

$$\implies$$
 Relative strength of the "rope tension": $C_2(p,q)/C_2(1,0) = \frac{1}{4}(p^2 + pq + q^2 + 3p + 3q)$

- \circ For breakup via the transition $\{p+1,q\}\mapsto \{p,q\}$: $\kappa_{\text{eff}}=\frac{2p+q+4}{4}\kappa$
- \circ For strange flavour, the suppression factor ρ from tunnelling probability in Lund model is given by:

$$\rho = \exp\left(-\frac{\pi(\mathbf{m_s^2 - m_u^2})}{\kappa_{\text{eff}}}\right)$$

¹ C. Bierlich, SC, G. Gustafson, L. Lönnblad, SciPost Phys. 13 (2022) 2, 023.

² J. High Energ. Phys. 2015, 148 (2015).

$\kappa_{\rm eff}/\kappa$ variation with average charged multiplicity $\langle dN_{ch}/d\eta \rangle$

- R = 0.5 fm (dotted line) - R = 1 fm (solid line) at \sqrt{s} = 7 & 13 TeV, $|\eta|$ < 0.5.

 $\sqrt{\kappa_{
m eff}}$ grows with the number of strings $\sqrt{\langle dN_{ch}/d\eta
angle}|_{\eta < 0.5} \propto {
m number}$ of strings

[†]C. Bierlich, SC, G. Gustafson, L. Lönnblad, *Jet modifications from colour rope formation in dense systems of non-parallel strings*, SciPost Phys. 13 (2022) 2, 023.

Advantages of the parallel frame: strangeness yields in jets

- \circ Generate Z + jet events with $|\eta| < 1.9$
- \circ Reconstruct the associated charged particle jet using the anti-k_T algorithm, with $R_j=0.4,\,|\eta|<2.1$
 - \rightarrow pseudojet
- $\circ\,$ Subtract the UE contribution from the pseudojet cone, for both p_\perp and yields

$$p_{\perp,
m jet} = p_{\perp,
m pseudojet} - 0.5 imes \Sigma p_{\perp,
m UE}$$

$$yield_{jet} = yield_{pseudojet} - 0.5 \times yield_{UE}$$

Strangeness yields in jets for p-p at $\sqrt{s} = 13$ TeV

Strange hadrons and protons to $\pi^+\pi^-$ yield ratio in the jet cone with $R_j=0.4$ vs. $p_{\perp, \rm jet}$.

[†]C. Bierlich, SC, G. Gustafson, L. Lönnblad, *Jet modifications from colour rope formation in dense systems of non-parallel strings*, SciPost Phys. 13 (2022) 2, 023.

κ_{eff} of primary hadrons in impact parameter space

[†] C. Bierlich, SC, G. Gustafson, L. Lönnblad, *Strangeness enhancement across collision systems without a plasma*, Physics Letters B, 137571(2022) 0370-2693.

Strangeness yields in pp $\sqrt{s}=7$ TeV, pPb $\sqrt{s_{NN}}=5.02$ TeV, PbPb $\sqrt{s_{NN}}=2.76$ TeV

Strange hadron to $\pi^+\pi^-$ yield ratios vs. $\langle dN_{ch}/d\eta \rangle_{\eta=0}$.

Summary

Conclusions:

- ✓ **Parallel frame formalism** includes all strings, regardless of the system
- ✓ Rope hadronization gives rise to strangeness and baryon enhancement across all systems, as well as in jets in p-p collisions
- ✓ String shoving might solve high enhancement of strange baryons in central A-A collisions

Outlook:

- Merging of rope hadronization and string shoving for all systems
- GLEIPNIR: Code to be published with further improvements on string interactions' implementation

Multi-strange baryon yields in jets for p-p collisions at $\sqrt{s} = 13$ TeV

Yield ratios of $(\Omega^- + \Omega^+)/(\pi^+\pi^-)$ (left) and $(\Xi^- + \Xi^+)/(\pi^+\pi^-)$ (right) with $0.4 < z = p_{\perp, \text{particle}}/p_{\perp, \text{jet}} < 0.6$, as a function of $p_{\perp, \text{jet}}$ for p-p collisions.

Steps in event generation in Gleipnir in Pythia/Angantyr

$ au pprox 0 \ fm ightarrow$	No transverse extension of strings
au pprox 0.5 fm $ ightarrow$	Parton showers and colour reconnection end,
	string shoving sets in
$ au pprox 1~{ m fm} ightarrow$	Strings are at maximum radius,
	maximum shoving force between overlapping strings
$ au pprox 2 \ fm ightarrow$	Hadronization via ropes
au > 2 fm $ ightarrow$	Hadronic rescattering

Dynamic evolution of the colour fields in strings

String interactions o primary hadron production vertices † o hadronic rescattering

[†]S. Ferreres-Solé and T. Sjöstrand, Eur.Phys.J.C 78 (2018) 11, 983.

Dynamic evolution of the colour fields in strings

Shift in primary hadronic vertices \rightarrow string shoving, & κ_{eff} via rope formation.

[†]S. Ferreres-Solé and T. Sjöstrand, Eur.Phys.J.C 78 (2018) 11, 983.