Collectivity in small systems from the small- \boldsymbol{x} perspective

Tolga Altinoluk

National Centre for Nuclear Research (NCBJ), Warsaw

MPI@LHC 2022 IFT UAM/CSIC Madrid

November 14, 2022

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

JRC collaboration partner

イロト イヨト イヨト

Collectivity in small systems from the small-x perspective 1/17

Two particle correlations

Motivation: Ridge structure

- correlations between particles over large intervals of rapidity peaking at zero and π relative azimuthal angle.
- observed first at RHIC in Au-Au collisions.
- observed at LHC for high multiplicity pp and pA collisions.

ATLAS DD 0.5<p_*<5 GeV ATLAS DD 0.5<p_*<5 GeV (S=13 TeV, 64 nb) VS=13 TeV, 64 nb⁻¹ N^{nec}≥120 0<N¹⁰⁰-20 (07^LU2) C(AnA0) n a ATLAS DD 0.5<p_*<5 GeV 0.5<p_ab<5 GeV ATLAS DO vs=5.02 TeV. 170 nb s=5.02 TeV. 170 nb⁻¹ 0≤N^{rec}<20 90≤N^{rec}<100 C (AnA) () পু 1.0 দ 30.9 0.5<p_*<5 GeV 0.5<p_*<5 GeV ATLAS D+Pb ATLAS p+Pb (5....=5.02 TeV, 28 nb⁻¹ 0<N**<20 Vs...=5.02 TeV, 28 nb N **>220 0(1.02 C(Aŋ,40)

[ATLAS Collaboration - arXiv:1609.06213]

Correlations within the CGC framework

Ridge in HICs \leftrightarrow collective flow due to strong final state interactions

(good description of the data in the framework of relativistic viscous hydrodynamics)

Ridge in small size systems: similar reasoning looks tenuous but hydro describes the data very well.

Can it be initial state effect?

<u>idea</u>: *final state particles carry the imprint of the partonic correlations that exist in the initial state.* Several mechanisms have been suggested to explain the ridge correlations in the CGC framework:

(i) Local anisotropy of the target fields \rightarrow rotational symmetry is broken.

[Kovner, Lublinsky - arXiv:1012.3398 / arXiv:1109.0347 / arXiv:1211.1928]

particles correlated in the incoming w.f. transverse separation $\ll 1/Q_s$ scatter through the same domain. initial state correlations \rightarrow final state correlations

Numerical studies based on local anisotropy of the target:

[Dumitru, Skokov - arXiv:1411.6030] / [Dumitru, McLerran, Skokov - arXiv:1410.4844]

・ロト ・ 四ト ・ 日ト ・ 日下

Correlations within the CGC framework -II

(ii) Glasma graph approach to two gluon production:

[Dumitru, Gelis, McLerran, Venugopalan - arXiv:0804.3858] [Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan - arXiv:1009.5295]

What is the physics behind the glasma graph approximation?

* Glasma graph calculation contains two physical effects:

· Bose enhancement of the gluons in projectile/target wave function

 $\begin{array}{l} [\text{TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1503.07126}] \\ \sigma|_{BE,P} \propto \left\{ \delta^{(2)} [(k_1 - q_1) - (k_2 - q_2)] + \delta^{(2)} [(k_1 - q_1) + (k_2 - q_2)] \right\} \\ \sigma|_{BE,T} \propto \left\{ \delta^{(2)} (q_1 - q_2) + \delta^{(2)} (q_1 + q_2) \right\} \end{array}$

• Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity. $\sigma|_{HBT} \propto \left\{ \delta^{(2)}(k_1 - k_2) + \delta^{(2)}(k_1 + k_2) \right\}$ [TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1509.03223]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Correlations within the CGC framework -III

Two particle correlations beyond the glasma graph approach: 2 gluon production in pA collisions

[TA, Armesto, Wertepny - arXiv:1804.02910] $\rightarrow k_{\perp}$ -factorized approach

 $[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739] \rightarrow Glasma graph approach$.

scattering on a dense target \rightarrow dipole and quadrupole operators. Factorization assumption (Area enhancement (AE) model):

$$\begin{array}{ll} \langle Q(x,y,z,v)\rangle_T & \rightarrow & d(x,y)d(z,v) + d(x,v)d(z,y) + \frac{1}{N_c^2 - 1}d(x,z)d(y,v) \\ \langle D(x,y)D(z,v)\rangle_T & \rightarrow & d(x,y)d(z,v) + \frac{1}{(N_c^2 - 1)^2}[d(x,v)d(y,z) + d(x,z)d(v,y)] \end{array}$$

[Agostini, TA, Armesto - arXiv:2103.08485]

Comparison of the AE model and MV model for fundamental operators:

with B_p being the transverse area of the projectile.

Correlations within the CGC framework -IV

[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739]

double inclusive X-section within the AE model:

Convenient way to study the two particle correlations: Fourier decomposition into harmonics in $\Delta\phi$

 $\Delta \phi \equiv$ azimuthal angle between the produced gluons with transverse momenta k₁ and k₂ [T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan - arXiv: 1509.03499]

$$2V_{n\Delta}(k_1, k_2) = \frac{a_n(k_1, k_2)}{a_0(k_1, k_2)} = 2 \frac{\int_0^\pi N(k_1, k_2, \Delta\phi) \cos(n\Delta\phi) \, d\Delta\phi}{\int_0^\pi N(k_1, k_2, \Delta\phi) \, d\Delta\phi}$$

• set $k_1 = p_T^{ref}$ and $k_2 = p_T$. Then, the azimuthal harmonics are defined as

$$v_n(p_T) = \frac{V_{n\Delta}(p_T, p_T^{ref})}{\sqrt{V_{n\Delta}(p_T^{ref}, p_T^{ref})}}$$

Tolga Altinoluk (NCBJ)

Collectivity in small systems from the small-x perspective 6/17

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Correlated 3 gluon production: v_2 and N correlations

[TA, Armesto, Kovner, Lublinsky, Skokov - arXiv: 2012.01810]

$$v_{2}^{2}(k,k',\Delta) = \frac{\int_{k-\Delta/2}^{k+\Delta/2} k_{2} dk_{2} \int_{k'-\Delta/2}^{k'+\Delta/2} k_{3} dk_{3} \int d\phi_{2} d\phi_{3} e^{i2(\phi_{2}-\phi_{3})} \frac{d^{2}N^{(2)}}{d^{2}k_{2}d^{2}k_{3}}}{\int_{k-\Delta/2}^{k+\Delta/2} k_{2} dk_{2} \int_{k'-\Delta/2}^{k'+\Delta/2} k_{3} dk_{3} \int d\phi_{2} d\phi_{3} \frac{d^{2}N^{(2)}}{d^{2}k_{2}d^{2}k_{3}}}$$

In momentum space: width of the BE correlations $\sim Q_s$ & width of the HBT correlations $\ll Q_s$

non-overlapping bins: $\Delta/Q_s < 0.5 - v_2$ is small & sizable correlation between N and v_2 (No HBT contribution) non-overlapping bins: $\Delta/Q_s > 0.5 - v_2$ is large & negligable correlation between N and v_2 (HBT start contributing)

• 同 • • 三 • •

B b

4 gluon production and correlations

- \bullet negative 4-particle cumulant, $c_2\{4\},$ at high multiplicity
- positive 4-particle cumulant, c_2 {4}, at low multiplicity

[CMS - arXiv:1606.06198] [ALICE - arXiv:1406.2474]

previous CGC calculations to study 4-particle correlations:

- positive 4-particle cumulant in the dilute-dilute regime [Dumitru, McLerran , Skokov - arXiv:1410.4844]
- negative 4-particle cumulant in the dilute-dense regime (quarks only)

[Dusling, Mace, Venugopalan - arXiv:1706.06260]

* cumulants:

$$\begin{split} c_n\{2\} &= \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle \\ c_n\{4\} &= \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle - 2 \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle^2 \end{split}$$

event average:

* azimuthal harmonics:

$$v_n\{2\} = (c_n\{2\})^{1/2}$$

 $v_n\{4\} = (-c_n\{4\})^{1/4}$

$$\left\langle e^{in(\phi_1+\dots+\phi_{m/2}-\phi_{m/2+1}-\dots-\phi_m)} \right\rangle = \frac{\int \left(\prod_{i=1}^m \frac{d^2 \mathbf{k}_i}{(2\pi)^2}\right) \frac{d^m N}{\prod_{i=1}^m d^2 \mathbf{k}_i} e^{in(\phi_1+\dots+\phi_{m/2}-\phi_{m/2+1}-\dots-\phi_m)}}{\int \left(\prod_{i=1}^m \frac{d^2 \mathbf{k}_i}{(2\pi)^2}\right) \frac{d^m N}{\prod_{i=1}^m d^2 \mathbf{k}_i}}$$

Tolga Altinoluk (NCBJ)

Collectivity in small systems from the small-x perspective 8/17

Multi-particle production: technical aspects (i)

multi-gluon spectra in dilute-dense regime at LO:

[Agostini, TA, Armesto - arXiv:2103.08485]

$$\frac{d^{n}N}{\prod_{i=1}^{n}d^{2}\mathbf{k}_{i}} = \int \left(\prod_{i=1}^{n} \frac{d^{2}\mathbf{q}_{2i-1}}{(2\pi)^{2}} \frac{d^{2}\mathbf{q}_{2i}}{(2\pi)^{2}}\right) \left\langle \left(\prod_{i=1}^{n} g^{2}\rho^{b_{2i-1}}(\mathbf{k}_{i} - \mathbf{q}_{2i-1})\rho^{b_{2i}*}(\mathbf{k}_{i} - \mathbf{q}_{2i})\right) \right\rangle_{p_{1}} \left\langle \left(\prod_{i=1}^{n} \overline{\mathcal{M}}_{\lambda_{i}}^{a_{i}b_{2i-1}}(\mathbf{k}_{i}, \mathbf{q}_{2i-1})\overline{\mathcal{M}}_{\lambda_{i}}^{\dagger a_{i}b_{2i}}(\mathbf{k}_{i}, \mathbf{q}_{2i})\right) \right\rangle_{T} \right\rangle$$

$$Contribution from the projectile sources Contribution from the strong field of the target term of targe$$

Multi-particle production: technical aspects (ii)

[Agostini, TA, Armesto - arXiv:2103.08485]

Models for the projectile and target averaging, and for the Lipatov vertex:

• Gaussian (MV-like) model for an extended projectile (with area B_p):

$$g^{2} \left\langle \rho^{b_{i}}(\mathbf{k}_{i}-\mathbf{q}_{i})\rho^{b_{j}}(\mathbf{k}_{j}-\mathbf{q}_{j})\right\rangle_{p} = \frac{\delta^{b_{i}b_{j}}}{N_{c}^{2}-1}\mu^{2} \left[\mathbf{k}_{i}-\mathbf{q}_{i},\mathbf{k}_{j}-\mathbf{q}_{j}\right] \qquad \qquad \mu^{2}(\mathbf{k},\mathbf{q}) = e^{-\frac{(\mathbf{k}\cdot\mathbf{q})^{2}}{4B_{p}^{-1}}} \left\langle \rho^{b_{1}}(\mathbf{k}_{1}-\mathbf{q}_{1})\rho^{b_{2}\dagger}(\mathbf{k}_{1}-\mathbf{q}_{2})\cdots\rho^{b_{2n-1}}(\mathbf{k}_{n}-\mathbf{q}_{2n-1})\rho^{b_{2}\dagger}(\mathbf{k}_{n}-\mathbf{q}_{2n})\right\rangle_{p} = \sum_{\omega\in\Pi(\chi)} \prod_{\{i,j\}\in\omega} \left\langle \rho^{b_{i}}(\mathbf{k}_{i}-\mathbf{q}_{i})\rho^{b_{j}}(\mathbf{k}_{j}-\mathbf{q}_{j})\right\rangle_{p}$$

• AE model for target averaging and GBW model for the dipole operators:

$$\left\langle U(\mathbf{y}_1)^{a_1b_1}U(\mathbf{y}_2)^{a_2b_2}\cdots U(\mathbf{y}_{2n})^{a_{2n}b_{2n}}\right\rangle_T = \sum_{\sigma\in\Pi(\chi)} \prod_{\{\alpha,\beta\}\in\sigma} \left\langle U(\mathbf{y}_\alpha)^{a_\alpha b_\alpha}U(\mathbf{y}_\beta)^{a_\beta b_\beta}\right\rangle_T \\ U(\mathbf{x})^{ab}U^{\dagger}(\mathbf{y})^{dc}\right\rangle_T = \frac{\delta^{ac}\delta^{bd}}{(N_c^2 - 1)^2} \left\langle \operatorname{Tr}\left(U(\mathbf{x})U^{\dagger}(\mathbf{y})\right)\right\rangle_T - \frac{1}{N_c^2 - 1} \left\langle \operatorname{Tr}\left[U(\mathbf{y}_1)U^{\dagger}(\mathbf{y}_2)\right]\right\rangle_T = e^{-\frac{Q_s^2}{4}(\mathbf{y}_1 - \mathbf{y}_2)^2}$$

• Lipatov vertex contains IR divergences: use a Gaussian instead.

$$L^{i}(\mathbf{k},\mathbf{q}_{1})L^{i}(\mathbf{k},\mathbf{q}_{2}) \rightarrow \frac{(2\pi)^{2}}{\xi^{2}} \exp\left\{-\frac{[\mathbf{k}-(\mathbf{q}_{1}+\mathbf{q}_{2})/2]^{2}}{\xi^{2}}\right\}$$

it connects with the Wigner function approach but includes correlations:

$$+ \delta^{b_1 b_3} \delta^{b_2 b_4} 2\pi B_p \delta^{(2)}(\mathbf{b}_1 - \mathbf{b}_2) e^{-(\mathbf{p}_1 + \mathbf{p}_2)^2 / (2B_p^{-1})} + \delta^{b_1 b_4} \delta^{b_2 b_3} 2\pi B_p \delta^{(2)}(\mathbf{b}_1 - \mathbf{b}_2) e^{-(\mathbf{p}_1 - \mathbf{p}_2)^2 / (2B_p^{-1})} \Big]$$

4 gluon production: numerical results

• Large number of terms for 4 gluon production (\sim 11000), reduced by using the symmetries

n = 4

 \star negative 4-particle cumulants \Rightarrow well-defined azimuthal harmonics

- * numerical values lie in the bulk of the experimental data
- * if we do not include the correlations in the projectile the cumulants are positive

Accidental symmetry in the CGC

"accidental symmetry in CGC" \Rightarrow vanishing odd harmonics

•breaking the accidental symmetry with nonlinear Gaussian approximation for dipole-dipole correlator: [Lappi, Schenke, Schlichting, Venugopalan - arXiv:1509.03499]

$$\langle D(x,y)D(u,v)\rangle = d_1 + \frac{1}{N_c^2} \left[\frac{\ln(d_3/d_2)}{\ln(d_1/d_2)} \right]^2 \left\{ d_1 + d_2 \left[\ln(d_1/d_2) - 1 \right] \right\} \qquad \begin{array}{l} d_1 \equiv D(x-y)D(u-v) \\ d_2 \equiv D(x-v)D(u-y) \\ d_3 \equiv D(x-u)D(y-v) \end{array}$$

 breaking the accidental symmetry with the density corrections to the projectile: [Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166] [Kendi, Marquet, Vila] (in prepration)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Subeikonal corrections in the CGC

Eikonal approximation amounts dropping the energy suppressed terms! For realistic values of energy one should go beyond eikonal approximation.

- dense target is defined by $\mathcal{A}^{\mu}(x)$ and eikonal approximation amounts to:
 - $\mathcal{A}^{\mu}_{a}(x) \simeq \delta^{\mu-}\mathcal{A}^{-}_{a}(x)$ other components of the target background field $\mathcal{A}^{\mu}_{a}(x)$ $\mathcal{A}^{\mu}_{a}(x) \simeq \mathcal{A}^{\mu}_{a}(x^{+}, \mathbf{x})$ other components of the target $: x^{-}$ dependence of $\mathcal{A}^{\mu}_{a}(x)$ $\mathcal{A}^{\mu}_{a}(x) \propto \delta(x^{+})$ Finite width L^{+} of the target along x^{+}

 (1) Other components of the background field (quark production): [TA, Beuf, Czajka, Tymowska - arXiv:2012.03886]

(2) Dynamics of the target (scalar and quark propogators): [TA, Beuf - arXiv:2109.01620]

(3) Finite width corrections in single inclusive gluon production:

[TA, Armesto, Beuf, Martínez, Salgado - arXiv:1404.2219] [TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

 $\mathcal{A}^{\mu} = \delta^{\mu-} \overline{\delta(\mathbf{x}^{+})} \mathcal{A}^{-}(\mathbf{x}) \to \mathcal{A}^{\mu} = \delta^{\mu-} \mathcal{A}^{-}(\mathbf{x}^{+}, \mathbf{x})$

direct relation with jet quenching (BDMPS-Z formulation)!

Subeikonal corrections in the CGC - II

[TA, Armesto, Beuf, Moscoso - arXiv:1505.01400]

Prod. Amp. $\mathcal{M} \propto$ scalar background propagator \rightarrow *eikonal expansion (in powers of* L^+/k^+) eikonal order: standard Wilson line / higher orders: new operators (decorated Wilson lines)

[TA, Dumitru - arXiv:1512.00279] \rightarrow corrections to the Lipatov vertex.

from pA to pp: expand the standard & decorated Wilson lines to first order in the background field.

Tolga Altinoluk (NCBJ)

Collectivity in small systems from the small-x perspective 14/17

Subeikonal corrections in the CGC - III

[Agostini, TA, Armesto - arXiv:1902.04483]

• calculate the diagrams by keeping the phase $e^{ik^-x^+}$ which is taken to be 1 in the eikonal limit.

Double inclusive cross section with Non-Eik Lipatov vertex

$$\frac{d\sigma}{d^{2}k_{1}d\eta_{1}d^{2}k_{2}\eta_{2}}\Big|_{\text{dilute}}^{\text{NE}} \propto \int_{q_{1}q_{2}} \left\{ \left[f(k_{1},q_{1},k_{2},q_{2}) + \frac{\mathcal{G}_{2}^{\text{NE}}(k_{1}^{-},k_{2}^{-};L^{+})g(k_{1},q_{1},k_{2},q_{2}) \right] + (\underline{k}_{2} \rightarrow -\underline{k}_{2}) \right\}$$

all non-eikonal effects are encoded in

$$\mathcal{G}_{2}^{\text{NE}}(k_{1}^{-},k_{2}^{-};L^{+}) = \left\{\frac{2}{(k_{1}^{-}-k_{2}^{-})L^{+}}\sin\left[\frac{(k_{1}^{-}-k_{2}^{-})}{2}L^{+}\right]\right\}^{2}$$

 $\mathcal{G}_2^{
m NE}(k_1^-,k_2^-;L^+)$ is not symmetric under $(\underline{k}_2
ightarrow -\underline{k}_2)$

⇒non-eikonal corrections seem to be breaking the accidental symmetry!!

Tolga Altinoluk (NCBJ)

э

odd-harmonics from the non-eikonal corrections in pp?

[Agostini, TA, Armesto - arXiv:1907.03668]

Non-eikonal corrections do generate odd harmonics.

$$V_{n\Delta}(k_1, k_2) = \frac{\int_0^{\pi} N(k_1, k_2, \Delta\phi) \cos(n\Delta\phi) \, d\Delta\phi}{\int_0^{\pi} N(k_1, k_2, \Delta\phi) \, d\Delta\phi}$$

$$v_n(p_T) = \frac{V_{n\Delta}(p_T, p_T^{ref})}{\sqrt{V_{n\Delta}(p_T^{ref}, p_T^{ref})}}$$

• $L^+ = 6$ fm in the rest frame and we scale it with the γ factor for different energies.

• $\mu_T = 0.4$ GeV and $\mu_P = 0.2$ GeV (these are the values that maximize v_3).

•
$$\eta_1 = \eta_2 \& p_t^{ref} = 1 \text{ GeV}.$$

Non-eikonal effects alone can not explain the odd-harmonics HOWEVER there is a contribution originating from these effects for certain kinematic region.

-

odd-harmonics from the non-eikonal corrections in pA?

[Agostini, TA, Armesto, Dominguez, Milhano - arXiv:2207.10472]

• NonEik. double inclusive spectrum (all order finite width effects) with operators like:

$$\frac{1}{N_c^2 - 1} \Big\langle \operatorname{Tr} \left[\mathcal{G}_{k^+}(x^+, \mathbf{x}; y^+, \mathbf{y}) U_{\mathbf{j}}^{\dagger}(x^+, y^+) \right] \Big\rangle_T \\ \frac{1}{N_c^2 - 1} \Big\langle \operatorname{Tr} \left[\mathcal{G}_{k_1^+}(x^+, \mathbf{x}; y^+, \mathbf{y}) \mathcal{G}_{k_2^+}^{\dagger}(x^+, \mathbf{\bar{x}}; y^+, \mathbf{\bar{y}}) \right] \Big\rangle_T$$

- $\sqrt{s_{\mathrm{NN}}}=$ 100 GeV, $\eta_1=\eta_2=$ 0.2, $|k_1|=|k_2|=$ 1 GeV
- near-side %4 and away-side %8

[Agostini, TA, Armesto - arXiv:2212.XXXXX]

• Harmonics from NNEik spectrum: non-eikonal parameter $\epsilon_i = Q_s^2 L^+ / (2k_i^+)$

Tolga Altinoluk (NCBJ)

Collectivity in small systems from the small-x perspective 17/17