Open and hidden heavy-flavour production in small systems with ALICE

17/11/2022

13th MPI@LHC International Workshop – Madrid

PHYSICS MOTIVATIONS

Heavy quarks produced in hard-scattering processes in the collision early stages

- Large Q^2 transfer \rightarrow perturbative process \rightarrow **test of pQCD** calculations
- Open heavy-flavour hadron production cross section calculated using the **factorisation approach**
 - > Fragmentation functions assumed universal across different collision systems

Quarkonium production involves different scales

- > Hard scale: heavy-quark production from hard scattering
- Soft scale: binding of $Q\bar{Q}$ pairs into a colorless final state Different models of quarkonium formation: e.g. Colour Evaporation Model (CEM), Non-Relativistic QCD (NRQCD)

PHYSICS MOTIVATIONS

Ratio of particle species (baryon-to-meson, strange-to-non-strange):

- Observables sensitive to heavy-quark hadronisation
- **FF universality questioned** by recent LHC measurements, several explanations proposed by theorists
 - > More precise/additional data can discriminate among the different theoretical models

Measurements of HF as a function of event multiplicity:

- Understand the **interplay** of **hard and soft processes** in particle production
- Investigate the role of multiple-parton-interaction (MPI) on heavy-flavour production
 2 < P_{ting} < 4 GeV/c 1 < P_{tasse} < 2 GeV/c
 (0-20%) - (60-100%)

For high-multiplicity pp and p-Pb events, hints of collective behaviour:

- Study **similarities** in small systems and Pb-Pb collisions
- Understand the behaviour across system size via multiplicity-dependent analyses
- Investigate the **source** of collective-like effects (initial or final state?)

Fabio Colamaria

THE ALICE EXPERIMENT

A multi-purpose experiment at the LHC, with excellent PID capabilities and tracking down to ≈100 MeV/c Main focus on heavy-ion studies, but rich physics programme also for small systems

Fabio Colamaria

Open and hidden heavy-flavour production in small systems with ALICE

D-MESON YIELD RATIOS IN pp COLLISIONS

• FONLL calculations (pQCD) correctly describe the data

FONLL: M. Cacciari et al, JHEP 10 (2012) 137 PYTHIA 8 :P. Skands, et al., EPJC 74 (2014) 3024

- > Using fragmentation functions evaluated from e⁺e[−], e[−]p measurements
- Meson-to-meson ratios **independent of** p_T and collision system
- Higher $D_s^+/(D^0+D^+)$ ratios for non-prompt mesons, due to relevant contribution to D_s^+ from B^0 , B^+ decays

PROMPT Λ_c^+/D^0 YIELD RATIOS IN pp COLLISIONS

PYTHIA 8 Monash: P. Skands, et al., EPJC 74 (2014) 3024 PYTHIA 8 CR Tunes: J. Christiansen, et al., JHEP 08 (2015) 003 Herwig: Eur.Phys.J. C76 (2016) no.4, 196 SHM: M. He and R. Rapp, PLB 795 (2019) 117-121 RQM: D. Ebert, et al., PRD 84:014025, 2011 Catania: V. Minissale, et al., PLB 821 (2021) 136622

- First Λ_{c}^{+} measurement down to $\boldsymbol{p}_{T} = \boldsymbol{0}$
- Ratio significantly higher than in e⁺e⁻ and e⁻p collisions

LEP average value: **0.113 ± 0.013 ± 0.006** (L. Gladilin, EPJC 75 (2015) 19)

- Strong p_T dependence, as for baryon-over-meson ratios in light-flavour sector
- Ratio underestimated by models with FF tuned on e⁺e⁻, e⁻p collisions (PYTHIA 8 Monash, Herwig 7)
- Proper description by models with modified fragmentation or augmented feeddown from higher-mass states:
 - PYTHIA 8 with updated CR modelling → "Junction" topologies enhance charm-baryon production
 - Catania model → Thermalised system of light quarks and gluons, hadronization via coalescence+fragmentation
 - Statistical Hadronization Model + Relativistic Quark
 Model
 → large feed-down contribution from augmented set
 of excited charm baryons, not yet observed

Fabio Colamaria

PROMPT Λ_c^+/D^0 **YIELD RATIOS VS MULTIPLICITY**

Does this feature evolve with event multiplicity?

- Λ_c^+/D^0 ratios at intermediate p_T larger for highest multiplicity than for lowest multiplicity
 - **5.3** σ significance for 1 < p_T < 12 GeV/c
- $p_{\rm T}$ and multiplicity dependence qualitatively described by:
 - PYTHIA with colour reconnection beyond leading-colour approximation (CR-BLC)
 - CE-SH, a statistical hadronization model with particle set from RQM
- No multiplicity dependence for D_s⁺/D⁰ ratios PYTHIA 8 Monash: P. Skands, et al., EPJC 74 (2014) 3024 PYTHIA 8 CR Tunes: J. Christiansen, et al., JHEP 08 (2015) 003 CE-SH: Phys. Lett. B 815 (2021) 136144

Fabio Colamaria

PROMPT Λ_c^+/D^0 **YIELD RATIOS IN DIFFERENT SYSTEMS**

- p_{T} -integrated Λ_{c}^{+}/D^{0} ratios **independent of multiplicity**
 - Different p_{T} redistribution between baryons and mesons rather than overall baryon yield enhancement
- In p-Pb collisions, **larger** Λ_c^+/D^0 **ratios** for $p_T > 3$ **GeV/c** (different p_T spectrum)
 - > Possible contribution from collective-like effects (as radial flow)?

Fabio Colamaria

13th MPI@LHC - 17/11/2022

 p_{\perp} (GeV/c)

HEAVIER BARION YIELD RATIOS TO D⁰ IN pp COLLISIONS

- Heavier baryon-to-meson ratios underestimated by PYTHIA8 Monash by several orders of magnitude
- PYTHIA 8 with CR-BLC modes and SHM+RQM models also not able to correctly reproduce the data
- Coalescence-based models get closer to measurements: Catania qualitatively describe the data, QCM underestimates them but by a lesser extent

Fabio Colamaria

CHARM PRODUCTION AND FF IN SMALL SYSTEMS

Charm fragmentation fractions:

- pp collisions at $\sqrt{s} = 5.02$ TeV:
 - Published in PRD 105 (2022) 1, L011103
- <u>p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV:</u>
 - > **D**⁰, Λ_c^+ : measured from $p_T = 0$
 - > D^+ , D_s^+ : extrapolated to $p_T = 0$ using POWHEG+PYTHIA
 - > Ξ^{0}_{c} : not measured yet:
 - $\sigma_{\rm pp}(\Xi^0_{\rm c}) \times 208 \times R_{\rm pPb}(\Lambda^+_{\rm c})$
- **Compatibility** between **pp and p-Pb** fragmentation fractions at $\sqrt{s_{NN}} = 5.02$ TeV
 - Significant baryon enhancement w.r.t. e⁺e⁻ and e⁻p: **charm fragmentation functions are not universal!**
- $c\overline{c}$ production cross section in |y| < 0.5 in pp at $\sqrt{s} = 5.02$ TeV measured by summing all charm ground states
 - > Updated results at \sqrt{s} = 2.76 TeV, 7 TeV, all points on **upper edge of pQCD calculations**

Fabio Colamaria

NON-PROMPT Λ_c^+/D^0 YIELD RATIOS IN pp COLLISIONS

- Provides access to the fragmentation of beauty quarks
- Enhanced beauty-baryon production w.r.t. e+e- collisions \rightarrow suggests non-universality also of $f(b \rightarrow H_b)$
 - Ratio well described by FONLL using LHCb FF and PYTHIA8 decay table for $p_T > 4$ GeV/c
- Similar p_T dependence for prompt and non-prompt Λ_c^+/D^0 ratios

Fabio Colamaria

HEAVY-FLAVOUR PRODUCTION AND MULTIPLICITY DEPENDENCE

Open and hidden heavy-flavour production in small systems with ALICE

J/Ψ PRODUCTION AT MIDRAPIDITY

- Prompt and non-prompt J/Ψ production cross section measured at midrapidity from e⁺e⁻ decays:
 - > At \sqrt{s} = **13 TeV** for p_T >1 GeV/c
 - > At \sqrt{s} = **5.02 TeV** for p_T>2 GeV/c

ALICE, JHEP 03 (2022) 190

NRQCD: PRL 106 (2011) 042002 NRQCD+CGC: PRL 113, 19, (2014) 192301 NRQCD CS+CO: PRL 106 (2011) 022003 NRQCD kT fact: Phys. Rev. D 100, 11, (2019) 114021 ICEM: Eur. Phys. J. C 80 no. 4, (2020) 330

- **Prompt J/** Ψ production cross section: **NRQCD** and **ICEM** models **in agreement** with measurements, NRQCD Lipatov calculations slightly overestimates data at low p_T
- Non-prompt J/Ψ production cross section well described by pQCD calculations (FONLL)
- Results consistent with CMS and ATLAS measurements in the common p_{T} range

Fabio Colamaria

QUARKONIUM PRODUCTION AT FORWARD RAPIDITY

- **Inclusive J/** Ψ production cross section at **forward rapidity** from $\mu^+\mu^-$ decay channel:
 - > Down to $p_{\rm T} = 0$
 - > At \sqrt{s} = 5.02, 7, 8, and 13 TeV
- Cross section (and its hardness) increase with increasing collision energy
- Good description provided by NRQCD+FONLL calculations and ICEM (not shown)

ALICE, arXiv:2109.15240

- Cross-section ratios vs p_T well reproduced by NRQCD for 8-to-13 TeV and 5-to-13 TeV, slight overestimation of 7-to-13 TeV ratio
- Behaviour of $q\overline{q}$ production vs energy well reproduced by ICEM calculations for different quarkonium species

Fabio Colamaria

J/Ψ PRODUCTION VS MULTIPLICITY

- Forward-rapidity J/Ψ production increasing linearly with multiplicity (no energy dependence), while midrapidity production shows a faster-than-linear growth
- Faster-than-linear increase at midrapidity predicted by models including different initial- or final-state mechanisms:
 - > MPI interactions with color reconnection, gluon saturation, coherent particle production, 3-gluon fusion, percolation
 - CPP, CGC+ICEM, and 3-Pomeron models provide the best description of midrapidity measurements
- CPP and 3-Pomeron models correctly reproduce also the results at forward rapidity, together with percolation model

Fabio Colamaria

Ψ(2S) PRODUCTION VS MULTIPLICITY

- Inclusive ψ(2S) production at forward rapidity also shows a linear dependence with midrapidity multiplicity:
 - > Well described by PYTHIA, with/without color reconnection, with some tension at high multiplicity
- $\psi(2S)/J/\psi$ double ratio compatible with unity \rightarrow Production at forward rapidity independent of charmonium state
 - Comover model in agreement with data within uncertainties, tension with PYTHIA at low multiplicity

Fabio Colamaria

BOTTOMONIUM PRODUCTION VS MULTIPLICITY

- Self-normalized Y(1S), Y(2S), Y(3S) yields and their ratios as a function of event multiplicity, at forward rapidity:
 - > Higher-mass states (lower binding energy) more sensitive to possible final-state dissociation mechanisms
- Linear increase of yields with event multiplicity for all states
 - Good description of data from all models up to $4 \cdot < dN_{ch}/d\eta >$, models diverge at larger multiplicites

Fabio Colamaria

D-MESON PRODUCTION VS MULTIPLICITY

Prompt D-meson selfnormalized yields at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV

Faster-than-linear increase with increasing multiplicity

- Consistent with other
 ALICE open and hidden
 HF measurements at y≈0
- Points towards a feature of charm production, rather than hadronisation

- **EPOS 3** predictions **with hydrodynamic component** reproduce the data trend better than EPOS 3 without hydrodynamics, and Colour Glass Condensate (CGC) with the 3 pomeron mechanism
 - None of the above models provides an optimal description of the measurement

EPOS 3: Phys. Rev. C 89 no. 6, (2014) 064903 CGC: , Eur. Phys. J. C 80 no. 6, (2020) 560

Fabio Colamaria

D-h CORRELATIONS VS MULTIPLICITY

V0M classes, I-II-III-IV: higher to lower multiplicities

- What about possible **modifications of charm fragmentation** with multiplicity?
- Measurement of **angular correlations** of prompt D⁰ mesons with charged particles in pp collisions at $\sqrt{s} = 13$ TeV
 - Evaluated near-side peak yields and widths in different forward-rapidity multiplicity ranges
 - No significant dependence of peak features with multiplicity observed

ALICE, Eur. Phys. J. C (2022) 82:335

Fabio Colamaria

NON-PROMPT D-MESON PRODUCTION VS MULTIPLICITY

- No relevant multiplicity dependence of non-prompt D-meson fraction in pp collisions at \sqrt{s} = 13 TeV
- Measurements compatible with CGC framework, qualitative description also provided by PYTHIA 8, with a slight overestimation at high multiplicity by some tunes

Fabio Colamaria

Open and hidden heavy-flavour production in small systems with ALICE

J/Ψ ELLIPTIC FLOW IN SMALL SYSTEMS

Investigate the presence of **collective motion** in **high-multiplicity pp and p-Pb** events for J/Ψ , and compare with Pb-Pb results

Pb-Pb collisions:

- > Presence of **strong collective effects**
- p-Pb collisions:
 - Significant flow for $p_T > 3$ GeV/c, not explained by transport models
- pp collisions (new):
 - No hints of collective behaviour observed for J/Ψ within uncertainties
- Presence of collective behavior in p-Pb and Pb-Pb, suggesting a common mechanism at play, still to be understood, with a significant difference w.r.t. pp data
- p-Pb results support what previously observed for open heavy flavour (and light-flavour particles)

OPEN HEAVY-FLAVOUR ELLIPTIC FLOW IN SMALL SYSTEMS

- **Positive** v_2 for HF decay **muons** in high-multiplicity p-Pb, consistent with previous HF decay **electron** measurement
 - Feature observed for lower p_T than for J/ Ψ , but different quark \rightarrow particle p_T scale + c,b \rightarrow e, μ decay kinematics
 - Well described by CGC model, and by AMPT from p_T >2 GeV/c
- Collective motion in high-multiplicity p-Pb collisions due to **final-state effects** (QGP droplet)? Or behaviour related to **initial-state effects** (e.g. gluon saturation)?

Fabio Colamaria

FURTHER HINTS OF COLLECTIVE EFFECTS IN HF

- D-meson $Q_{CP} > 1$, pointing toward possible radial-flow 'push' of D-meson spectra in HM p-Pb
- Systematic data/theory comparison is needed to understand the source of these features!
 - > Further modellization of HF evolution from small to large systems would be helpful

Fabio Colamaria

SUMMARY AND PERSPECTIVES

- Wealth of results released by the ALICE Collaboration exploiting **Run 2 pp and p–Pb** data, providing relevant findings on heavy-flavour behaviour in small systems
- Open heavy-flavour:
 - Baryon-to-meson ratios and baryon fragmentation fractions in pp and p-Pb collisions significantly larger than in e⁺e⁻, e⁻p collisions
 - > Charm fragmentation fractions are not universal across the collision systems
- Quarkonium:
 - Different correlation to event multiplicity for quarkonium production at forward and midrapidity
 - Observed positive elliptic flow in high multiplicity p-Pb collisions (as for open HF), no evidence of collective motion in high-multiplicity pp collisions
- ALICE Collaboration **ready to analyze Run 3 data** to shed light on the currently open questions

BACKUP SLIDES

BEAUTY PRODUCTION AT MIDRAPIDITY

ALICE, JHEP 05 (2021) 220

Fabio Colamaria

BEAUTY PRODUCTION AT MIDRAPIDITY

- $b\overline{b}$ production cross section at midrapidity in pp collisions at \sqrt{s} = 5.02 TeV
 - > From measurements of non-prompt D^0 , D^+ , and D_s^+ mesons, extrapolated with FONLL+PYTHIA8
- Consistent with previous measurements, well described by FONLL and NNLO pQCD calculations

Fabio Colamaria

HEAVIER CHARM BARYON RATIOS

 $\Omega_c^0/\Xi_c^0 \approx 1$: important Ω_c^0 contribution to charm cross section?

13th MPI@LHC - 17/11/2022

2

0 12 14 ρ_T (GeV/c)

10

FURTHER J/W DATA/MODEL COMPARISON AT FORWARD RAPIDITY

ALICE, arXiv:2109.15240

Fabio Colamaria

Ψ(2S) PRODUCTION AT FORWARD RAPIDITY IN pp

13th MPI@LHC - 17/11/2022

Fabio Colamaria

J/Ψ PAIR PRODUCTION

Both results on di-J/ ψ and di-J/ ψ to single J/ ψ cross section are in good agreement with LHCb

- Caveats: ALICE measures inclusive J/ψ and LHCb prompt J/ψ
 - Slightly different rapidity ranges

Fabio Colamaria