Underlying Event Measurements at ATLAS

Zvi Citron for ATLAS

MPI@LHC

Underlying Event Measurements at ATLAS

Zvi Citron for ATLAS

MPI@LHC

- Charged Particles in $t\bar{t}$ events \rightarrow Constrain color reconnection in MC
- Charged Particles in Y(nS) events

 \rightarrow Color effect not in MC (?)(!)

Big Picture: Why look at top quarks and CR?

- Good for top quarks
 - Color reconnection (CR) modeling is a leading uncertainty in top mass measurements
- Good for generators models
 - Better constraints on CR (MPI) should help everywhere else

O Hard Interaction Resonance Decays MECs, Matching & Merging FSR ISR* QED Weak Showers Hard Onium Multiparton Interactions Beam Remnants* 🔯 Strings Ministrings / Clusters Colour Reconnections String Interactions Bose-Einstein & Fermi-Dirac Primary Hadrons Secondary Hadrons Hadronic Reinteractions (*: incoming lines are crossed)

	$m_{\rm top} [{\rm GeV}]$
Result	172.63
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.35 ± 0.07
Parton shower and hadronisation	0.08 ± 0.05
Initial- and final-state QCD radiation	0.20 ± 0.02
Underlying event	0.06 ± 0.10
Colour reconnection	0.29 ± 0.07
Parton distribution function	0.02 ± 0.00
Single top modelling	0.03 ± 0.01
Background normalisation	0.01 ± 0.02
Jet energy scale	0.38 ± 0.02
<i>b</i> -jet energy scale	0.14 ± 0.02
Jet energy resolution	0.05 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.12 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	$0.\overline{37 \pm 0.09}$
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.79 ± 0.06

ATLAS-CONF-2022-058

3

How do we look at top quarks and CR?

- Select $t\overline{t}$ events using di-leptonic $e\mu$ channel
- Look at inclusive* charged particles as:
 - [*Not including the leptons or jet tracks]
 - Multiplicity n_{ch}
 - Scalar sum of charged particle p_T , $\sum_{n_{ch}} p_T$
 - $\sum_{n_{ch}} p_T$ in bins of n_{ch}

- Pileup and fake contribution subtracted with MC templates
- Compare data to MC
 - Pythia8 hadronizes with Lund strings ... several CR models
 - Herwig7 hadronizes with clusters ... several CR models
 - Many parameters!

How Does Pythia8 Do?

arXiv:2209.07874

- Misses features of the data
- CR0, "MPI based" minimize color string lengths baseline for Pythia& ATLAS
- CR1,"QCD based", nominally improved version of CR0 is same~worse
- CR2, "gluon move", only gluons for reconnection (partially top mass motivated)

How Does Herwig7 Do?

arXiv:2209.07874

- Somewhat better
- Plain & Stat CR: quarks can be rearranged from cluster to cluster
- Baryonic CR: geometric (nearest neighbor) combinations
- No CR model silver bullet

6

Model to Model

arXiv:2209.07874

- Herwig probably best
- Data is ahead of models

K EXPERIMENT	

Observable	$n_{\rm ch}$	$\sum_{n_{\rm ch}} p_{\rm T}$	Global($n_{ch}, \sum_{n_{ch}} p_{T}$)	$\sum_{n_{\rm ch}} p_{\rm T}$ in bins of $n_{\rm ch}$	
NDF	7	10	17	8	
Generator set-up			χ^2		_
Powheg+Pythia 8.230	62	106	434	224	_
CR0	55	113	629	129	
CR1	98	60	581	158	
CR2	58	179	402	238	
Powheg+Herwig 7.0.4	39	16	145	29	
Powheg+Herwig 7.1.3	53	42	188	41	
Powheg+Herwig 7.2.1	78	25	313	87	
Powheg+Herwig Baryonic CR	75	20	241	29	
Powheg+Herwig Stat CR	23	40	121	39	אוניברסיטת
Sherpa 2.2.10	77	211	263	124	جامعه بن عد ity of the Negevنــ

7

Big Picture: Why look at **Y**-UE correlations?

- Soft sector observables that were once (uniquely) associated with a QGP have been measured in pp collisions
 - Most prominently "flow" which persists to low multiplicity pp & even photo-nuclear interactions
 - Strangeness enhancement
- It's more difficult to tell this story with hard sector observables
- Here we look at Upsilon meson correlations with inclusive charged particles to try to bridge the soft-hard gap
 - Analyze charged particles kinematics to focus on Underlying Event (UE)

ALI-PREL-321075

<u>Eur. Phys. J. C 77 (2017) 428</u>

What Do We Know about Upsilon Production and collectivity at the LHC?

 From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP

[Color screening]

[Regeneration]

What Do We Know about Upsilon Production and collectivity at the LHC?

- From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP
- We can measure the nuclear modification factor in heavy-ion collisions to compare AA to pp production

ATLAS

Ben-Gurion University of the Negev

What Do We Know about Upsilon Production and collectivity at the LHC?

- From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP
- We can measure the nuclear modification factor in heavy-ion collisions to compare AA to pp production
 - pA could give us some sense of the influence of "cold nuclear effects"

حامعة بن غوريون في النقب

Ben-Gurion University of the Negev

CMS Measurement of Y(nS) and pp Multiplicity

 CMS results all the way back in 2014 challenge Y suppression as a nuclear effect by showing a decrease in excited Y states compared to the ground state vs pp multiplicity

CMS Measurement of Y(nS) and pp Multiplicity

- CMS results all the way back in 2014 challenge Y suppression as a nuclear effect by showing a decrease in excited Y states compared to the ground state vs pp multiplicity
- More detailed measurements in 2020

CMS Measurement of Y(nS) and pp $S_{xy}^T = \frac{1}{\sum_i p_{Ti}} \sum_i \frac{1}{p_{Ti}} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{pmatrix}$

- CMS results all the way $back^{\text{fb}^{-1}(7 \text{ TeV})}$ 2014 challenge Y suppre **SSiO** (1s) as a nuclear effect by showing a decrease in experiment of the Y states compared to the ground state vs pp multiplies ity (1s)
- More detailed measurem $N_{\text{track}}^{\Delta R} = 0$ in 2020
 - Including analysis of event $N_{\text{track}}^{\Delta R} > 2$ geometry via spherecity Gwhier < 1.2 suggests effect is connected with UE net jets $60 \times 80 \times 100$ 120 140×100

 $S_T = 1 \rightarrow \text{not jet-like}$

- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

 "Inversion" of CMS approach, study same physics with emphasis on the UE itself

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

17

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

Ren-Gurion University of the Negev

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

Ben-Gurion University of the Negev

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

 Shift in UE multiplicity across different excitation states can be understood as suppression of excited states at higher multiplicity

Is there Y(nS) Suppression in pp Collisions?

- As event multiplicity (should be UE) grows larger, excited Y states are, compared to the ground state, relatively less likely to be found
- Do the CMS and ATLAS results show some "QGP-like" quarkonium "melting"?
- Is it even suppression? (yes) Maybe ground state enhancement? (no)
 →In any case seems to be a hard UE correlated phenomenon
 beyond CR/MPI tunings

Summary

- Measuring CR sensitive observables in top quark events, gives us a detailed handle on CR/MPI
- Strong evidence from Upsilon mesons that there is some non-trivial interaction between the "UE" and a hard scattering
 - ATLAS & CMS have independent approaches that both point to UE driven modification of relative abundance of ground state vs excited state Upsilon mesons
 - Modification appearst to be a suppression of excited states
 - Seems we don't understand Upsilon meson production in pp

Extra Slides

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- In a previous study we asked: Does the presence of a hard scattering in the collision change "something-likegeometry" and consequently the observed "flow"?
- To answer we studied v₂ via 2particle correlations in pp collisions 'tagged' by a Z boson
- The answer to above question is not really

אוניברסיטת בן-גוריון בנגב

جامعة بن غوريون في النقب Ben-Gurion University of the Negev

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- Developed techniques for HI-style analysis in high-luminosity pp collisions
 - We learned how to look at all tracks in the event even with high pile-up conditions
 - Starting thinking about where else this could be used ... **Upsilon mesons**!

Eur. Phys. J. C 80, 64 (2020)

What Do We Know about Upsilon Production at the LHC?

- Production cross-section seems well measured in pp collisions
- Some questions remain regarding polarization, importance of $\boldsymbol{\chi}_{\rm h}$ feeddown etc

pQCD Calculations of Cross-Sections

PRD94, 014028 (2016)

 χ_b feed-downs into $\Upsilon(nS)$ are similar for different species.

Calculations and the data show clear differences

Discrepancies are larger for higher $\Upsilon(nS)$ and lower $p_{\rm T}$

It looks like the ratios would rather follow $m_{\rm T}$ – scaling cures rather than the data

$\Upsilon(1S)$ curve overshoots the data

Technical Fit Things

fit
$$(m) = \sum_{nS} N_{\Upsilon(nS)} F_n(m) + N_{bkg} F_{bkg}(m)$$

 $F_n(m) = (1 - \omega_n) CB_n(m) + \omega_n G_n(m)$ Crystal Ball + Gaussian
 $F_{bkg}(m) = \sum_{i=0}^{3} a_i (m - m_0)^i; a_0 = 1$ Polynomial

$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix}$$

Systematics Summary

	$p_{\rm T}^{\mu\mu} \le 4 {\rm GeV}$	$4 < p_{\rm T}^{\mu\mu} \le 12 {\rm GeV}$	$12 < p_{\rm T}^{\mu\mu} \le 30 {\rm GeV}$	$p_{\rm T}^{\mu\mu} > 30 {\rm GeV}$
$\Upsilon(1S)$	0.5 - 0.6	0.5 - 0.7	0.7 - 0.8	0.8 - 0.9
$\Upsilon(2S)$	0.6 - 0.6	0.5 - 0.7	0.7 - 0.8	0.8 - 1.0
$\Upsilon(3S)$	0.9 – 1.3	0.5 - 0.8	0.7 - 0.8	0.8 - 0.9
$\Upsilon(1S) - \Upsilon(2S)$	0.11 - 0.15	0.06 - 0.10	0.12 - 0.21	0.2 - 0.5
$\Upsilon(1S) - \Upsilon(3S)$	0.6 – 0.9	0.14 - 0.36	0.14 - 0.15	0.16 – 0.19

Table 1: Systematic uncertainties for measurements of $\langle n_{ch} \rangle$ and their differences for different $\Upsilon(nS)$ states and for the difference between $\langle n_{ch} \rangle$ measured for $\Upsilon(1S) - \Upsilon(nS)$. The values are the number of charged particles with $0.5 \le p_{\rm T} < 10$ GeV and $|\eta| < 2.5$.

Shown here in "units" of n_{ch} but propagated to all quantities

Co-mover Interaction Model (CIM)

EPJC 81, 669 (2021)

- Within CIM, quarkonia are broken by collisions with comovers – i.e. final state particles with similar rapidities.
- CIM is typically used to explain *p*+A and A+A systems, matches CMS Upsilon pp data.
- With the new data, CIM can be tested on pp to reproduce $\Upsilon(nS) \Upsilon(1S)$ differences
 - in cross section
 - in *n*_{ch}
 - in hadron kinematic distributions: p_{T} , $\Delta \phi \Delta \eta$

אוניברסיטת בן-גוריון בנגב

جامعه بن غوريون في النقب Ben-Gurion University of the Negev

Quarkonia Ratios Expected From m_{T} Scaling

arXiv:2203.11831

- Transverse mass scaling lets one define an expectation for the excited states relative to the ground states
- Works well ~universally for light mesons at LHC energies
- Looking at Upsilon meson cross-sections shows missing excited states at low p_T for Y(2S) factor of 1.6 are missing for Y(3S) factor of 2.4!

A Strange Digression

- Enhancement of strange hadrons is one of the signature pp collectivity results
- Recent ALICE analyses seek to understand its nature ...

A Strange Digression

- Enhanced strange hadrons are transverse to leading particle in event
- Strangeness enhancement is occurring outside of jets, perhaps implying that it's a UE effect ...

Does the rapidity matter?

JHEP 04 (2014) 103

Introducing midrapidity-forward gap flattens the dependence as mentioned in: https://indico.cern.ch/event/634426/contributions/3003672/

But it may be due to loss of resolution...

Does the rapidity matter?

ALICE result on forward $\Upsilon(2S)/\Upsilon(1S)$ vs tracks at midrapidity

Data doesn't warrant any gap dependence

A direct answer should come from $\Delta \eta$ – analysis

