Double J/ψ production as a test of parton correlations in double parton scattering with the Gaunt-Stirling model based on ArXiv:2208.13429

Sergey Koshkarev and Stefan Groote

"Pocket formula"

Double parton scattering results are usually interpreted in terms of the so-called "pocket formula" [D. d'Enterria and A. Snigirev, 2018]

where T(b) is the overlap function that characterizes the transverse area occupied by the interacting partons in the impact parameter space b.

where the combinatorial factor is m = 1 for identical final states A = B and m = 2 for $A \neq B$. This formula is derived under the assumption of independent parton scatterings $\sigma_{eff} = \left[\left[d^2 b \ T^2(\mathbf{b}) \right]^{-1},\right]$

"Pocket formula" phenomenology

Phenomenologically DPS process can be cast into the form $\sigma_{\text{DPS}} = \frac{m}{2} \frac{1}{\sigma_{eff}} \int dx_1 \dots dx_4 f(x_1, Q_A) f(x$ $f(x_{\Delta}, Q_{R})\hat{\sigma}_{R}(x_{3}, x_{\Delta})\theta(1 -$

parton level, and θ is the Heaviside step function.

$$\hat{\sigma}(x_2, Q_A)\hat{\sigma}_A(x_1, x_2)f(x_3, Q_B) \times$$

$$(x_1 - x_3)\theta(1 - x_2 - x_4),$$

where f(x, Q) denotes the parton distribution function, $\hat{\sigma}$ is the cross section at

The effective cross section **Different energies and final states (ATLAS, 2017)**

year) state, (energy, final Experiment

ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) DØ ($\sqrt{s} = 1.96$ TeV, J/ ψ + J/ ψ , 2014) DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) LHCb ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S) + D^{0,+}, 2015$) LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺_s, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁰, 2012) ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) |CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) $|D\emptyset| (\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014)$ $D\emptyset \ (\sqrt{s} = 1.96 \text{ TeV}, \ \gamma + b/c + 2 \text{ jets}, \ 2014)$ DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) $|CMS| (\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2014)$ ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013)

ATLAS

Effective cross section in $\gamma + 3$ jets process in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV at the DØ experiment

Year	$p_T^{\min}(GeV/c)$	$y \text{ or } \eta \text{ range}$	$\sigma_{eff} (\mathrm{mb})$
9010	$60 < p_T^{\gamma} < 80$	$\left \begin{array}{c} y^{\gamma} < 1.0 \\ 1.5 < y^{\gamma} < 9.5 \end{array} \right $	16 09 99
	$\begin{array}{c c} p_T^* > 25 \\ p_T^{\text{jet } 2,3} > 15 \end{array}$	$ 1.5 < y' < 2.5 y^{\text{jet}} < 3.0 $	$10 \pm 0.3 \pm 2.3$
	$p_T^{\gamma} > 26$	$ \eta^{\gamma} < 1.0$	
2014	$p_T^{\text{jet 1}} > 15$	$ 1.5 < \eta^{\gamma} < 2.5$	$12.7 \pm 0.2 \pm 1.3$
	$15 < p_T^{jet 2,3} < 35$	$ \eta^{\rm jet} < 2.5$	

- The central values are different
- The errors bars do not overlap

Effective cross section in $\gamma + 3$ jets process in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV at the DØ experiment, 2010

Double Parton Distribution functions Double parton distribution function phenomenology

$$\sigma_{\text{DPS}} = \frac{m}{2} \frac{1}{\sigma_{eff}} \int dx_1 \dots dx_4 D(x_1, x_3, \zeta)$$

 $D(x_1, x_3, Q_A, Q_B) \neq f(x_1, Q_A)f(x_3, Q_B)\theta(1 - x_1 - x_3)$

 $Q_A, Q_B D(x_2, x_4, Q_A, Q_B) \hat{\sigma}_A(x_1, x_2) \hat{\sigma}_B(x_3, x_4),$

J/ψ – pair from DPS production **Feed-down effect**

• Not all J/ψ 's come from prompt production

State	Decay mode	Feed-down fraction (r)
$\int J/\psi$	_	0.62 ± 0.04
ψ'	$J/\psi + X$	0.08 ± 0.02
χ_c	$J/\psi + \gamma$	0.30 ± 0.08

 $\sigma(J/\psi J/\psi) = \frac{\sigma(J/\psi)^2}{\sigma} \left(\frac{r_{J/\psi}^2 + r_{\psi'}^2 + r_{\chi_c}^2}{2} + 2 \cdot (r_{J/\psi}r_{\psi'} + r_{J/\psi}r_{\chi_c} + r_{\psi'}r_{\chi_c}) \right)$ $\sigma_{e\!f\!f}$ 2

J/ψ – pair from DPS production **Effective cross section: reference value**

Experiment	\sqrt{s} , TeV	Collid
DØ	1.96	
ATLAS	8	
CMS	13	

 $\langle \sigma_{eff} \rangle = 4.6 \text{ mb}$

The Spin Physics Detector at the Nuclotron-based Ion Collider fAcility

 $10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

 The Spin Physics Detector at the Nuclotron-based Ion Collider fAcility (NICA) collider is a universal facility to investigate the spin structure of the proton and deuteron and the other spin-related phenomena with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to

J/ψ – pair from DPS production at NICA with the "pocket formula"

 Using the CERN proton beam at 400 GeV/c to produce charmonium with incident on different nuclear targets, the NA50 experiment measured single J/ψ production on on Be, Al, Cu, Ag, W, and Pb targets, $\langle \sigma(J/\psi) \rangle_{W,Ph} \approx 12.5 \text{ mb per nucleon, the NA3 experiment provided data on}$ the production of J/ψ pairs on a platinum target with the production cross sections of 27 ± 10 pb per nucleon.

- $\sigma_{DPS}(J/\psi J/\psi) \approx 2.6 \text{ pb}$
 - $f_{DP} \approx 9.6\%$

J/ψ – pair from DPS production at NICA with the Gaunt-Stirling model **Monte-Carlo strategy**

MSTW2008LO and the double PDF are calculated in the GS09 model

$$R_{\Delta}(x_1, x_2, x_3, x_4, Q_A, Q_B) = -\frac{1}{f}$$

 In order to distinguish between single and double PDF predictions, we use a Pythia 8 Monte-Carlo simulation, where the single PDF are calculated with employing the R_{Λ} , when the ration was calculated for every single event.

> $D(x_1, x_3, Q_A, Q_B)D(x_2, x_4, Q_A, Q_B)$ $f(x_1, Q_A)f(x_2, Q_A)f(x_3, Q_B)f(x_4, Q_B)$

J/ψ – pair from DPS production at NICA with the Gaunt – Stirling model

Results

 $\langle R_{\Lambda} \rangle \approx 0.37$ $\sigma_{eff} = \frac{\langle \sigma_{eff} \rangle}{\langle R_{\Delta} \rangle} \approx 12.4 \text{ mb}$ $f_{DP} \approx 3.6\%$

Number of events "Pocket formula" vs Gaunt—Stirling model

- According to estimations of SPD collaboration they expect up to 12M single J/ψ events per year.
- Using double and single J/ψ production cross sections measured by NA3 and NA50 experiments, we can calculation the following ratio $\sigma(J/\psi J)$
 - $\sigma(J/y)$
- Multiplying this ration with f_{DP} , we can estimate the number of DPS J/ψ —pairs per year: ~ 115 and ~ 43 in case of the "pocket formula" and GS09, respectively.

$$\frac{1}{\psi} > 10^{-4}$$

Conclusion

- First of all, GS09 model predicts much higher value of σ_{eff} than the value previously measured by DØ, ATLAS and CMS at low Bjorken-*x*.
- We can investigate the following ratio $N(\Delta_{\theta} < 0.25)/N(\Delta_{\theta} > 0.25)$. For the "pocket formula" this ratio is equal to ~ 2/5 and for GS09 ~ 1/3.
- Having taken into account the fact that $\Delta \phi_{\pi} = (\phi(J/\psi_1) \phi(J/\psi_1))/\pi$ has a peak near 1 for SPS but a flat shape for DPS, we were able to exclude the region $\Delta \phi_{\pi} \sim 1$ in order to maximize the DPS/SPS ratio.

Thanks for your attention!

Back Up

Maximization DPS/SPS ratio

• Having taken into account the fact that $\Delta \phi_{\pi} = (\phi(J/\psi_1) - \phi(J/\psi_1))/\pi$ has a peak near 1 for SPS but a flat shape for DPS, we were able to exclude the region $\Delta \phi_{\pi} \sim 1$ in order to maximize the DPS/SPS ratio.

NA3 experiment, 1985

φ_{ψψ} (degrees)

