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Setting the stage
● Color non-singlet DPDs suppressed by Sudakov factor

([Artru, Mekhfi; 1988], [Manohar, Waalewijn; 2012]) 

→ rapidity dependence, see later
●  Also suppressed after DGLAP evolution?

Not necessarily! (see previous talk, [Blok, Mehl; 2022])
● Until now, DGLAP evolution available only at LO…
● Let’s go to NLO! 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.37.2618
https://arxiv.org/abs/1202.5034
https://arxiv.org/abs/2210.13282
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Matrix element structure very similar to the one of PDFs:

Operators inside matrix element have the same structure as the ones inside PDFs

Double parton distributions (DPDs)
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LO double Drell-Yan production
adapted from [Diehl, Gaunt; 2017]

DPD color indices
adapted from [Diehl, Gaunt; 2017]

https://arxiv.org/abs/1710.04408
https://arxiv.org/abs/1710.04408
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DGLAP evolution of DPDs
● Collinear, y-dependent DPDs evolve with a DGLAP equation

(analoguous equation for μ2)
Note: finite distance y acts as a UV-cutoff for otherwise existing divergences in 
interactions between the two partons

● Diagonal after projection onto irreducible representations with the help of color 
projector:

● New feature: rapidity dependence!
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Rapidity dependence of DPDs
● Rapidity divergences compensated by a soft factor, same structure as for 

TMDs!
● Rapidity dependence in DPDs:

● Rapidity dependence in splitting kernels:

→ additional rapidity term in color non-singlet splitting kernels,

     for color singlet: 
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Sudakov factor inside DPDs
● Isolate (x-independent) rapidity dependence:

● Let’s get an idea of the effect of the Sudakov factor. Expand only to LO and use RGE of CS 
kernel. The last term determines behavior.

Vanishes for μy = μi →no/weak suppression at 
certain scales!
(see also [Blok, Mehl; 2022])Suppression!

Vanishes for color singlet
Logs inside CS kernel vanish 
at this scale configuration.

See talk by Peter Plößl

https://arxiv.org/abs/2210.13282
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Sudakov factor inside DPDs
● Main takeaway: Sudakov suppression can be small/absent!
● Thus, understanding effect of remaining (x-dependent) log and DGLAP 

evolution becomes even more important.
● DGLAP equation for “reduced” DPD:

No x-dependence in rapidity variable, Mellin convolution as we know it

absent in color singlet
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LO colored DGLAP kernels
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→Leads to a global “color” factor for
   all non-δ(1-x) terms:

→ δ(1-x) terms stay as they are,
     because color projectors are
     normalized to unity

(first done in [Diehl, et. al.; 2011], also used in
 [Blok, et.al.; 2022])
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https://arxiv.org/abs/1111.0910
https://arxiv.org/abs/2210.13282
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NLO colored DGLAP kernels
● More graphs → more color factors → no global factor, but more involved 

  structure!
● Need to regulate rapidity divergencies 
● Calculated using two methods:

1. Based on existing results of DGLAP kernels for PDFs

2. Based on short distance matching of TMD operators projected onto color 
non-singlet representations
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1. Method:
Extraction from

graph-by-graph results

based on [Curci, Furmanski, Petronzio; 1980], [Ellis, Vogelsang; 1996],
[Vogelsang; 1996] and [Vogelsang; 1997]

(special thanks to Werner Vogelsang for help)

https://www.sciencedirect.com/science/article/abs/pii/0550321380900036
https://arxiv.org/abs/hep-ph/9602356
https://arxiv.org/abs/hep-ph/9603366
https://arxiv.org/abs/hep-ph/9706511
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Approach

(tables based on results from the publications on the previous slide)

...

…

...

...
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Approach

Combine with

... ...

(need to recalculate 4-gluon vertex diagrams from scratch)
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Limitations: the rapidity dependence

● Calculational method tailored for collinear PDFs

→ No sensitivity to rapidity divergences,
     i.e. no extraction of δ(1-x) terms possible

● Either invent new scheme that also regulates rapidity divergences,
or make use of existing literature

→ TMD matrix elements!
● serves also a cross check for all the non-δ(1-x) terms
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2. Method:
Extraction from

projected TMD matrix elements
based on [Echevarria, Scimemi, Vladimirov; 2016]
and [Gutierrez-Reyes, Scimemi, Vladimirov; 2018]

https://arxiv.org/abs/1604.07869
https://arxiv.org/abs/1805.07243
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Approach

Use short distance matching formula between collinear PDF and TMD matrix 
elements to have access to rapidity regulator.

Extract splitting kernels from single pole at NNLO after calculating the matrix 
elements up to desired order.

again obtained from evaluating
color projected diagrams like
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Results
● Kernels can be decomposed such that

● Part from real graphs calculated with both methods
● Casimir scaling of NLO anomalous dimension same as at LO!

 
● Identical Casimir scaling also for the additional “non-sing” terms
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Summary

● For the first time, obtained all colored NLO DGLAP kernels, for 
unpolarized, longitudinal and transversity distributions

● All non-δ(1-x) terms are cross-checked with two completely 
independent methods

● Also obtained the NLO anomalous dimension of the CS-kernel for 
higher-than-octet representations

Stay tuned for numerical results!



Thank you for your attention!
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Back up: Color Projectors
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● Color singlet: Identical splitting kernels as for PDFs

● Two flavor-singlet combinations in the color octet:
–                    mixes with symmetric gluon
–                    mixes with antisymmetric gluon

● Gluon decuplet and 27-multiplet evolve independently from quark 
distributions

DGLAP evolution channels
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● Two flavor-singlet combinations in the color octet:

Backup: Flavor singlet evolution equations
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Backup: Method overview

Unpol. Longit./
Helicity

Transv.

Method 1:
Graphs

Method 2:
Matching

Matrix elements not available to us in the form we need
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Backup: Longitudinal kernels: scheme change
Ɣ5 matrix does not anti-commute with all ɣ matrices in dim. reg. with more than 4 
space-time dimension.

- This leads to additional terms that violate scale independence of a 
combination of non-singlet distributions (see [Vogelsang; 1996]).

- Get rid of these terms with a scheme change on twist-2 operator level:

This leads to:

https://arxiv.org/abs/hep-ph/9603366
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What about 4-vertex graphs?

Color structure of gluon 4-vertex does not factorize:

Calculate by hand, using the methods illustrated in [Ellis, Vogelsang; 1996]

...

https://arxiv.org/abs/hep-ph/9602356
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Calculating 4-vertex graphs

Master formula:

prop. to splitting kernel extracts single pole of
expansion in ϵ

Integral over momentum flowing
out of the top of the graph
→ upper cut-off at hard scale

Graph with integral over 
residual phase space

● Equivalent to taking the UV part of the graph (scaleless integrals vanish in dim. reg.)
– Splitting kernels as anomalous dimensions connected to renormalisation factors of 

PDF/DPD operators
– See [Collins, Rogers, Sate; 2021] for a comparison of both approaches

https://arxiv.org/abs/2111.01170
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Method 2: Approach
● Make use of short distance matching formula between collinear PDF and 

TMD matrix elements to have access to rapidity regulator:

● R.h.s. calculated with the help of the δ-regulator inside Wilson line 
[Echevarria et. al.]:

in eikonal propagators:

https://arxiv.org/abs/1604.07869
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Method 2: Limitations(?)

● Colored matrix elements only available for unpol. and transv. case

→ δ(1-x) terms are missing for longitudinal kernels
● However, these terms come from kinematical regions in which gluons 

become soft → interaction can be approximated by eikonal coupling, 
which is spin independent

● This is validated
– … for all polarizations in color singlet case

→ known for a long time in the literature
– … for unpol. and transv. in all color representations (our results)
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Back up: Kernels in their full glory



29
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Back up: Kernels in their full glory
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Back up: Kernels in their full glory
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Back up: Kernels in their full glory
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Backup: rapidity dependence in DGLAP evolution
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