

Recent XATLAS measurements in heavy-ion collisions

MPI@LHC 2022 - 13th International workshop on Multiple Partonic Interactions at the LHC 14-18 November 2022, Madrid, Spain

University of Colorado Boulder

Yeonju Go

University of Colorado Boulder on behalf of the **ATLAS** collaboration

Quark Gluon Plasma and Heavy-ion Collisions

- are no more confined into hadrons
 - properties known as an almost perfect fluid
 - \rightarrow lowest specific sheer viscosity (η /s) of any known substance

Nature Physics 15 (2019) 1113

Quark Gluon Plasma (QGP): extremely hot and dense phase of matter in which quarks and gluons

Quark Gluon Plasma and Heavy-ion Collisions

• Hard Probes: produced in the early phase of the collision and experience the evolution of QGP ⇒ jets, heavy flavour, quarkonia, ...

Recent ATLAS Results in Heavy-ion Collisions...

Jets

- photon-tagged jets
- b-jets
- reclustered large R jets
- dijet momentum imbalance
- jet substructure

Heavy flavor

- charm and bottom muon R_{AA} and v_2 upsilon production

Photo-nuclear collisions dijet production

+ Many more!

Only selected hard probe measurements will be shown due to the time limit

How does the color charge interact with and lose energy in the medium? Can we utilize quark versus gluon probes?

Yeonju Go

MPI@LHC 2022 November 14-18

Probes of Bulk QGP

Jets

Color-charge dependence of energy loss

q-g Compton scattering

ATLAS-CONF-2022-019

Color-charge dependence of energy loss

Yeonju Go

ATLAS-CONF-2022-019

Two factors to consider besides the different quark/gluon fraction between the *y*-tagged jets and inclusive jets...

1) $p_{\rm T}^{\rm jet}$ distribution difference \rightarrow makes R_{AA} \uparrow by 0.05~0.08 2) Isospin and nuclear PDF effect \rightarrow makes R_{AA} \checkmark by 0.05~0.1

These two effects are expected to have opposite sign and similar magnitude

Color-charge dependence of energy loss

Yeonju Go

ATLAS-CONF-2022-019

Hard Probes

What is parton mass dependence energy loss mechanism in the medium?

Yeonju Go

Probes of Bulk QGP

Jets

MPI@LHC 2022 November 14-18

10

• Color-charge and parton mass dependence of energy loss

Casimir color factor

$$\langle \Delta E_g \rangle \propto \alpha_s C_R \hat{q} L^2$$
 4/3 for quarks

 $\Delta E_{gluon} > \Delta E_{quark}$

• Color-charge and parton mass dependence of energy loss

Hard Probes

What is the production mechanism of open heavy flavor and quarkonia?

Yeonju Go

Probes of Bulk QGP

Heavy Flavor Quarkonia

between the data and models

Phys. Lett. B 829 (2022) 137077

RAA (charm) / RAA (bottom)

At low p_T, separation between charm and bottom muons

the data and models

Heavy Flavour RAA

MPI@LHC 2022 November 14-18

Yeonju Go

16

Upsilon RAA

 \overline{b}

• Suppression of the *bb* bound states

RAA

submitted to PRC

$R_{AA}(\Upsilon(ns)) / R_{AA}(\Upsilon(1s))$

Hard Probes

Do jets experience different energy loss due to unequal path lengths?

Yeonju Go

Probes of Bulk QGP

Jets

MPI@LHC 2022 November 14-18

18

Dijet momentum imbalance

 Path length dependent energy loss $p_{\mathrm{T},1} = p_{\mathrm{T}}^{\mathrm{leading jet}}$ $p_{\mathrm{T},2} = p_{\mathrm{T}}^{\mathrm{subleading jet}}$ 0.06 $x_{\rm J} \equiv \frac{p_{\rm T,1}}{p_{\rm T,2}}$ 0.04 0.02 0.3

Suppression of balanced dijets (high x_J) in Pb+Pb collisions with centrality ordering

Dijet momentum imbalance

Path length dependent energy loss

$\mathsf{R}^{\mathsf{pair}}_{\mathsf{AA}}$

subleading jets are more suppressed than leading jets

Yeonju Go

Hard Probes

Can we study color (de)coherence using jet substructure measurements?

Yeonju Go

Probes of Bulk QGP

Jets

MPI@LHC 2022 November 14-18

21

Re-clustered Large-radius jets

• Hard parton splitting using re-clustered R=1.0 jets

→ re-clustered R=1.0 jets; by using anti-k_T R=0.2 jets with p_T>35 GeV as inputs to anti- k_T algorithm with R=1.0

- soft contributions removed
- no recovering energy outside R=0.2 sub-jets

 \rightarrow two sub-jets at the final clustering step from k_T algorithm used to define \mathbf{k}_{T} splitting scale ($\sqrt{d_{12}}$)

$$\sqrt{d_{12}} = \min(p_{\mathrm{T},1}, p_{\mathrm{T},2}) \cdot \Delta R_{12}$$

 ΔR_{12}

ATLAS-CONF-2019-056

Re-clustered *R*=1.0 jet

R=0.2 jets

Re-clustered Large-radius jets

• Hard parton splitting using re-clustered R=1.0 jets

A significant difference between single sub-jet (SSJ) and those with more complex substructure

Yeonju Go

Jet Substructure

Study color (de)coherence using jet splitting angle

soft drop grooming procedure to determine
opening angle of the hardest splitting (rg)

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut}(=0.2)$$

Lower r_g with increasing jet p_T \rightarrow high-p_T jets are more collimated

Jet Substructure

• Study color (de)coherence using jet splitting angle

→ soft drop grooming procedure to determine opening angle of the hardest splitting (\mathbf{r}_{g})

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_{cut}(=0.2)$$

Jets with larger opening angles (large **r**_g) lose more energy

No strong jet p_T dependence in R_{AA} at a given r_g

Probes of nuclear parton distribution function (nPDF)

Hard Probes

Can we also study the initial state of the collisions? .. how about using ultra-peripheral collisions (UPC)?

Yeonju Go

Photo-nuclear Dijet Production

Constrain nPDFs with di-jets produced in UPC collisions

triple-differential cross sections measured

Nuclear momentum fraction

 $x_{\rm A} \equiv \frac{M_{\rm jets}}{\sqrt{2}} e^{-y_{\rm jets}}$

Photon parton momentum fractions

 $z_{\gamma} \equiv -$

Total transverse momenta of the jets

 $H_{\rm T} \equiv \sum p_{{\rm T},i}$

Jet kinematics correspond to hard scattering kinematics

ATLAS-CONF-2022-021

Photo-nuclear Dijet Production

Constrain nPDFs with di-jets produced in UPC collisions

triple-differential cross sections measured

Yeonju Go

MPI@LHC 2022 November 14-18

ATLAS-CONF-2022-021

Provide limits on nPDFs

Summary

- Various ATLAS measurements in heavy ion collisions to study quark gluon plasma and nuclear modifications

 - ⇒ parton mass hierarchy and sequential suppression ← heavy flavor muons, Upslions
 - ⇒ color (de)coherence and jet hard splittings ← jet substructure
- "Recent ATLAS measurements in small collision systems" presented by Sruthy Das on Tue. at 10:50am

Find other interesting

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults

SQM 2022 June 13-17

Re-clustered Large-radius jets

Hard parton splitting using re-clustered R=1.0 jets

A continuous increase of the suppression with increasing centrality

Yeonju Go

Phys. Lett. B 829 (2022) 137077 Phys. Lett. B 807 (2020) 135595

$R_{AA} VS V_2$ simultaneous description of R_{AA} and v₂ can constraint models!

Color-charge and parton mass dependence of energy loss

RAA (b-jet) / RAA (inc. jet) ~20% above unity for both the data and calculations

