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To describe soft diffraction Good and Walker assumed that the state of an energetic
 incident hadron 
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i.e., to the absence of inelastic di↵raction at t = 0.

In a general case of t 6= 0, summing over the states M and using their completeness

in Eq. (124), one can write

d�(D + h ! ”pn” + h)

dt

���
incoh

= 2
d�(N + h ! N + h)

dt
(1 � F

2
D(4t)) ,

d�(D + h ! D + h)

dt
= 4

d�(N + h ! N + h)

dt
F

2
D(t) , (126)

where FD(t) is the deuteron elastic form factor. Equation (126) indicates that inelastic

di↵raction is impossible at t = 0, if h interacts with just one nucleon. At the same time

at �t > 0, inelastic di↵raction is present and dominates for t satisfying the condition

�t � 1/R2
D (RD is the e↵ective deuteron radius).

Note that no cancellation of inelastic di↵raction at t = 0 takes place, if h can

interact (at the amplitude level) with both nucleons of the deuteron. This is the case

of the nuclear shadowing correction to the total pion–deuteron (hadron–nucleus) cross

section discussed in Sec. 7.

6.2. Cross section fluctuations

The idea that inelastic di↵raction can take place at small t due to the presence of

configurations in the nucleon, which can interact with di↵erent strengths, was first

suggested in the paper of Feinberg and Pomeranchuk [1, 2]. In this work, as an example

of fluctuation of the interaction strength, the authors considered fluctuations of the

nucleon into the nucleon and the pion, where the latter could originate from the pion

field of the nucleon.

A model illustrating this idea was suggested by Good and Walker [3]. They assumed

that the projectile can interact with di↵erent interaction strengths in contributing

configurations, which do not change while the wave packet passes through the target.

The corresponding coherence length (time) lc denotes the distance, over which the

incoming hadron remains in the state with the mass M
⇤,

lc =
1
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=

✓q
M⇤ 2 + p

2
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2
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2
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◆�1

' 2plab

M⇤2 � m
2
h

� Rtarget , (127)

where Rtarget is the radius of the target. From Eq. (127), one can immediately see

that the coherence length linearly grows with an increase of the energy of the incoming

hadron. Therefore, the range of masses M
⇤, which contribute to the fluctuations and

which can be considered “frozen”, increases.

Good and Walker [3] assumed that the state of an energetic incident hadron | i can

be represented as a coherent superposition of eigenstates | ki of the scattering matrix

| i =
X

k

ck| ki , (128)

where

ImT | ki = tk| ki ,X

k

|ck|2 = 1 . (129)
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and orthogonal 
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Here, T is the scattering operator, and tk is the imaginary part of the eigenvalue

corresponding to the eigenstate | ki.
Various states | ki interact with the target with di↵erent cross sections �k. By the

optical theorem, �k is related to the imaginary part of the scattering amplitude tk,

�k = tk . (130)

Thus, the coherent superposition of the eigenstates, which form the final state emerging

after the scattering, could be di↵erent from the initial state. Note that introduction of

states, which interact with di↵erent cross sections, is natural in QCD, see the discussion

in Sec. 3, where (at least in the perturbative regime) the strength of interaction is related

to the area occupied by color.

Thus, the formalism of eigenstates of the scattering matrix is natural for describing

di↵ractive dissociation of hadrons. However, the model is valid only for small t, which is

the kinematics considered in the original paper [3], since the authors discussed di↵ractive

dissociation for scattering o↵ nuclei. Thus, they e↵ectively assumed that t is very small,

�t  2/R2
A, where RA is the e↵ective nucleus size. Later on in a number of papers it

was assumed that Eq. (129) can be applied in a wide range of the momentum transfer,

which seems problematic. Indeed, elastic scattering of one of the constituents of the

di↵racting hadron can break it at finite t even in the absence of fluctuations, see the

case of the deuteron–proton scattering considered above and the rapidity gap process

discussed in Sec. 5.6. The assumption that cross section eigenstates are orthogonal at

t 6= 0 is in contradiction with calculations in the dipole model, where one obtains for

two states with di↵erent transverse sizes rt and r
0
t

h (rt)|T (t 6= 0)| (r0
t)i 6= 0 . (131)

Also, additional evidence comes from the analysis of soft di↵raction in pp scattering

[246], which shows that spin-flip amplitudes become important and dominate at large

�t � 0.2 � 0.3 GeV2.

Thus, the formalism of eigenstates of the scattering matrix is suitable for describing

di↵ractive dissociation of hadrons for t ⇠ 0.

Using Eqs. (128)–(130), di↵ractive dissociation can be presented as follows.

Di↵ractive scattering occurs when the final state carries the same quantum numbers

as the initial state, i.e., whenever the initial state overlaps with any | ki. Then, the

total di↵ractive di↵erential cross section at t = 0 can be presented as
⇣

d�

dt

⌘di↵

t=0
=

1

16⇡

X

k

|h k|ImT | i|2 =
1

16⇡

X

k

|ck|2t2k ⌘ 1

16⇡
h�2i . (132)

In Eq. (132), we have used the completeness of the set of states | ki and the optical

theorem (130). Similarly, the elastic di↵erential cross section at t = 0 reads
⇣

d�

dt

⌘el

t=0
=

1

16⇡
|h |ImT | i|2 =

1

16⇡

⇣ X

k

|ck|2tk
⌘2

⌘ 1

16⇡
h�i2

. (133)
Inelastic diffractions is related to fluctuations of cross section
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Ψ

pQCDpQCD
In pQCD idols of a given size  - is eigenstate for t=0, but different size dipoles are not orthogonal
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Nonperturbative example — deuteron +p —> d+p & pn +p.

Problem  GOOD & WALKER   LOGIC TO BE APPLICABLE FOR A RNGE OF T , IT ISN 
NECESARY TO HAVE THE SAMEEIGENSTATES FOR DIFFERENT T.  I

Doubtful In pQCD DIPOLES  OFf DIFFERENT SIZE ARE  EIGENSTATES FOR T=0, BUT NOT FOR FINITE  T.
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Figure 29. Di↵erential number of events in W in bins in t and x as a two-dimensional
function of W and �Ymin for the EIC kinematics. Left column: no cuts on angle, right
column: restriction on angles 4�. Upper row: bin in |t| 2 (1, 2)GeV2 and x 2 (0.1, 0.3),
lower row: bin in |t| 2 (4, 8)GeV2 and x 2 (0.01, 0.05). Integrated luminosity
L = 10 fb�1. Figure from [163], https://doi.org/10.1103/PhysRevD.103.014022.

corresponding minimum invariant momentum transfer squared is

�tmin = p
2
L =

(M2 � m
2
h)

2

(2ph)2
⇡ 0 . (123)

To see why the existence of such processes is non-trivial, it is instructive to consider

an example of scattering of a bound state of two nucleons (e.g. a deuteron) o↵ a

stationary hadron in the impulse approximation. Assuming for simplicity that the cross

sections of proton–hadron and neutron–hadron interactions are equal, the cross section

of deuteron–hadron inelastic di↵raction can be written in the following form

d�(D + h ! M + h)

dt
= 2

d�(N + h ! M + h)

dt

���h D (k, �k) | M

⇣
k +

q

2
, �k � q

2

⌘
i
���
2

, (124)

where  D and  M are the wave functions of the incoming deuteron and the produced

state M , respectively, which depend on the momenta in the two-nucleon center of mass

system. In particular, k is the initial proton momentum and k + q/2 is the proton

momentum after the scattering, where q is the momentum transfer.

If M is a two-nucleon system, the condition of orthogonality of the wave functions

of the continuum and bound states leads to
d�(D + h ! ”pn” + h)

dt

���
t=0

= 0 , (125)
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Impulse approximation

No fluctuations 
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where Rtarget is the radius of the target. From Eq. (127), one can immediately see

that the coherence length linearly grows with an increase of the energy of the incoming

hadron. Therefore, the range of masses M
⇤, which contribute to the fluctuations and

which can be considered “frozen”, increases.

Good and Walker [3] assumed that the state of an energetic incident hadron | i can

be represented as a coherent superposition of eigenstates | ki of the scattering matrix

| i =
X

k

ck| ki , (128)

where

ImT | ki = tk| ki ,X

k
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Consistent with GW

But contrary  to GW expectations at finite t 
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Recently  renewed interest to Inelastic diffraction in γ +p (A)→ J/ψ  (leading dijet)  + gap  + Y  

 Rapidity gap In particular it was suggested by Heikki Mäntysaari,  Björn Schenke that the data 

at -t < 2 GeV   are dominated  by color fluctuations. Hot spots, etc.


Prompted us to look again on these processes - interplay  of 

different mechanisms which relative role depends on t.

2
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Inelastic diffraction in γ +p (A)→ J/ψ  (leading dijet)  + gap  + Y  

Three regimes

 - color fluctuations in nucleons variance of t=0

�diff/�el = variance of gluon density at given x  
(color fluctuations)

elastic scattering of a  small dipole off gluons  &  quarks-t>0.3 ÷ 0.5 GeV2

for smaller t this mechanism is suppressed by factor R = 1�
✓

1

1� t/M2

◆4

Frankfurt et al

0.1 < -t<0.3 ÷ 0.5 GeV2      interplay   of these two mechanisms

◉

◉

◉
M2= 1 GeV2

plus spinflip
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with t0 = 0.6� 1.0GeV. The coherent cross section is then given by [7]
d�coherent

dt
= F 2

g (t)
d�factorization

dt
. (15)

The contribution of excited final states to the inelastic cross section comes with a
suppression factor

d�suppressed

dt
=

⇥
1� F 2

g (t)
⇤ d�factorization

dt
. (16)

Note that this
Inelastic diffractive cross section

d�inelastic

dt
=

d�̃inelastic

dt
�

⇥
1� F 2

g (t)
⇤ d�factorization

dt
. (17)

Here we use �̃ to label an experimental cross section.

3.2 Fluctuations of the gluon density
In the leading-twist approximation, the ladder is attached to the same nucleon as Fig. 1
(a). The nucleon has the same in-and-out state without momentum transfer t. We can
expand the initial proton state into a complete basis of partonic states, |pi =

P
n an |ni,

as such, the gluon density

G
�
x,Q2

�
=

X

n

|an|2 G
�
x,Q2|n

�
⌘ hGi . (18)

We assume there are no significant short-range correlations in the nucleon wave func-
tion. Given that the ladder in Fig. 1 (a) does not transfer any transverse momentum
from the parton, the partonic state |ni remains the same after the diffraction. This allows
us to express the elastic and the total diffractive cross section as [8]

d�elastic

dt

����
t=0

/
⇥P

n |an|
2 G (x,Q2|n)

⇤2 ⌘ hGi2 , (19)

d�diffractive

dt

����
t=0

/
P

n |an|
2 [G (x,Q2|n)]2 ⌘ hG2i . (20)

Thus from the elastic and inelastic cross section, we can obtain the fluctuation on the
gluon density

!g ⌘
hG2i � hGi2

hGi2
=


d�inelastic

dt

�
d�elastic

dt

�

t=0

(21)

4 Presenting the basic calculations
[WL: Just for presenting the figures, not a formal part of the draft yet.]

The scale used for adjusting the ↵S is
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3.2 Fluctuations of the gluon density
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as such, the gluon density

G
�
x,Q2

�
=

X

n

|an|2 G
�
x,Q2|n

�
⌘ hGi . (18)

We assume there are no significant short-range correlations in the nucleon wave func-
tion. Given that the ladder in Fig. 1 (a) does not transfer any transverse momentum
from the parton, the partonic state |ni remains the same after the diffraction. This allows
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Perturbative Pomeron: what is  energy dependence cross section  in vacuum channel ?
Problem for the study  - two large parameters ln Q2, and ln 1/x.

DIS - both parameters enter (DGLAP );   BGKL  - only ln 1/x (scattering  of two small dipoles)

BFKL elastic amplitude   f(s)= (s/s0)1+ ω

leading log  ω     ~  0.5 ÷ 0.8 , NLO ~ 0.1, resummation ~0.25

! = a1↵S � a2↵
2
S + ...

Main reason for small values of ω  - energy conservation
Promising direction: Rapidity gaps at large t for 
J/psi production - squeezing from both ends. 
Can be measured in UPC (pA) if good 
acceptance in proton region

rapidity gap

fixed x

29

/P

/P

/P

a simpler process than Mueller and Tung dijet

P

7

Parton knockout. mechaanism
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elementary reaction scattering of projectile off a parton of the target 
at large t belongs to a class of reactions with hard white 
exchange in t-channel

FS 89, FS95,

Mueller & Tung 91

Forshaw & Ryskin 95

30

best way to measure of the strength of inelastic interactions of small dipole in the processes 
initiated by elastic small dipole  - parton scattering. In HI via UPC feasible for 
 at [s’]1/2=20 GeV -  100  GeV  at the LHC

x

N

γ* VM

X

regime of color opacity, a direct evidence is very limited, see however [?]. The rapidity gap
processes we discuss in this paper will provide additional handles to address these questions.

To probe this physics a number of small x processes which originate due to elastic scat-
tering of a parton and a small quark-antiquark (qq̄) color singlet dipoles (we will refer to
them in the following simply as dipoles) at large momentum transfer and at high energies
were suggested. This includes hard di�raction in pp⇧ pX process at large t, production of
two jets accompanied by rapidity gap-coherent Pomeron [?], the rate of production of two
back to back jets with a large rapidity gap in between [?] as compared to the rate of two jet
production in the same kinematics without rapidity gaps [?, ?], photo(electro) production
of vector mesons at large t with a rapidity gap [?, ?, ?]. Production of two jets with a gap
in between was studied experimentally at the Tevatron, see e.g. [?]. Over the last ten years
the theoretical and experimental studies were focused on the photo/electro production o�
a proton. Studies of these processes at HERA resulted in the measurements of the rele-
vant cross sections [?, ?, ?, ?, ?] in a region of the photon-proton center of mass energies
20 GeV ⇤ W�p ⇤ 200 GeV .

The HERA data agree well with many (though not all) predictions of the QCD motivated
models (several of which use the LO BFKL approximation[?]), see for example [?] and
references therein.

Clearly it would be beneficial to extend such study to higher W�p and over a larger
range of the rapidity gap intervals to investigate how energy dependence of the small dipole
- parton scattering changes with t. Recently we demonstrated [?] that this will be possible
using quasireal photons in the ultraperipheral collisions (UPC) of protons with nuclei at
LHC.

Here we perform a more detailed analysis focusing on study of ⇥ meson photoproduction:

� + p(A)⇧ ⇥ + rapidity gap + X, (1)

at large t and with a rapidity gap between ⇥-meson and produced hadronic system X in
the proton-nucleus and nucleus-nucleus UPC at LHC. We consider the kinematics where the
rapidity gap interval is su⇤ciently large (⌅ 4) to suppress contribution of the fragmentation
processes. Related physics can be investigated in the di�ractive production of charm or two
jets separated by large rapidity gap from the nucleon fragmentation region. For example,
studies of the A-dependence of production of two jets in the processes like � + A ⇧ (jet +
M1)+ rapidity gap+(jet+M2) will allow to check presence of the color transparency e�ects
in the gap survival in hard photon induced processes [?].

The CMS and ATLAS detectors are well suited for observing such processes since they
cover large rapidity intervals.

The main variables determining the dynamics of the process are the mass MX of system
produced due to the dissociation of proton target, the square of the transfered momentum
�t ⇥ Q2 = �(p� � pV )2, and the invariant energy of the qq̄- parton elastic scattering

s� = xW 2
�p, (2)

where

x =
�t

(�t + M2
X �m2

N)
, (3)

2

⎫
⎭⎬

~

~
x̃ =

�t

(M2
X � t)
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The choice of large t ensures several  important simplifications:
✵ the parton ladder mediating quasielastic  scattering  is attached to the  
projectile  via two gluons. 
✵✵ attachment of the ladder to two partons of the target is strongly 
suppressed.  
✵✵✵ small transverse size dqq̄ ⇥ 1/

⇤
�t⇠ 0.15fm forJ/ for� t ⇠ m2

J/ 

d��+p!V+X

dtdx̃
=

=
d��+quark!V+quark

dt


81

16
gp(x̃, t) +

X

i

(qip(x̃, t) + q̄ip(x̃, t))

�
31

exp(2! ·�Y )
resummation predicts a huge  effect - between ΔY =2 and ΔY 
=4   σ is expected to increase by a factor of  3  !!! 

/P

if EIC would have a detector with high acceptance in the nucleon fragmentation 
region. Ar LHC much larger ΔY can be reached —> even larger effect

9



γ + A → J/ψ + gap + Y⎫
⎭
⎬s� = x̃W 2

�N

xg ab
so

rp
tiv

e 
in

te
ra

ct
io

n

Complementary  to coherent J/ψ.
 Tracks dipole though ~ 10 fm 

of nuclear matter
✺

✺ Allows to measure dipole 
size as a function of q2

32

Estimate  of dipole size  for q2=0 
d0 = .25fm, mc = 1.5 GeV (

)

✺ Can reach maximal W of LHeC
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W p, GeV
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(
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) ultraperipheral Pb( ) +Pb->Pb+X+J/
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q2 = 4GeV 2

q2 = 50GeV 2

M2
X < 100q2GeV 2

-t

d2(�t)/d2(0) ⇥ (1� t/4m2
c)
�1

Significant absorption is expected 
in the leading twist and higher 

twist models of dipole interaction. 
One can select xg both in the LT 
shadowing region and above 0.01

Schematic diagram of an ultraperipheral 
collision of two ions. The impact 
parameter, b, is larger than the sum of the 
two radii, RA+RB. 

Depending on the channel WγN    up to 1  TeV can be reached. Hardness of 
the process can be regulated using different final states. 

for moderate virtualities (J/psi), x=10-3 was  reached - much smaller x in the future.

Next 10 -15 years - the only reasonably direct way to probe small x and 
moderate virtualities are different ultraperipheral collisions

I will review comparison of the vector meson theory predictions  and comparison with 
the LHC data  results and some directions for further studies

!2

EIC - - high precision, more tools (DIS,..) but smallest xA which can be reached is  x ~ 10-3  for  Q2 > few GeV2

~ 10-5 — 10-6

At LHC charm is attractive tool to study paQCD regime at  moderate virtuality’s.. will give several examples.

Schematic diagram of an ultraperipheral 
collision of two ions. The impact 
parameter, b, is larger than the sum of the 
two radii, RA+RB. 

Depending on the channel WγN    up to 1  TeV can be reached. Hardness of 
the process can be regulated using different final states. 

for moderate virtualities (J/psi), x=10-3 was  reached - much smaller x in the future.

Next 10 -15 years - the only reasonably direct way to probe small x and 
moderate virtualities are different ultraperipheral collisions

I will review comparison of the vector meson theory predictions  and comparison with 
the LHC data  results and some directions for further studies

!2

EIC - - high precision, more tools (DIS,..) but smallest xA which can be reached is  x ~ 10-3  for  Q2 > few GeV2

~ 10-5 — 10-6

At LHC charm is attractive tool to study paQCD regime at  moderate virtuality’s.. will give several examples.
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)



5 Distribution in the amplitude
This section presents

f (k2, t, y)

ImA
(22)

as a function of k2 in different settings of t and y. W 2 = 1002 GeV2 are used for all the
following calculations in the whole note.

8

Large t data described well by pQCD. Iwe  it crazy to go ti t~0?

We calculated  distribution in the two gluon ladder over   transverse momenta of gluons

Conclusion: momenta typically above 1 GeV/c: k

Two contributions - two gluons are attached to the same parton or to two different partons.

No suppression Large suppression. F   (k )
N
4 2

11



For t—> 0 attachment to the same partons leads to cross section which 

is strongly suppressed  - only elastic term survives 

(like in the deuteron example, logic similar to GW.)

Suppression factor for each vertex - gluon form factor 

R = 1�
✓

1

1� t/M2

◆4

M ~ 1 GeV.

12



• HERA 2003 [9] : Inelastic cross sections for larger |t| with kinematic range 50 GeV <
W�p < 150GeV.

• HERA 2013 [10] : Inelastic cross sections for smaller |t| with kinematic range
25 GeV < W�p < 110GeV.

• HERA Elastic 2013 [10] : Elastic cross sections with kinematic range 25 GeV <
W�p < 110GeV.

Figure 2: Basic calculations with W 2 = 1002 GeV2 for larger range of |t|.

5

Large t calculation extrapolated to small t
Figure 8: Suppressed calculation (Yellow) and the fitting (Green) of the difference add
up (Red) to the data HERA 2013 (Blue) closely. The setting used here is : half scale,
t0 = 1.0GeV2, first 5 points fitted.
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Suppression included.

Overall no need for gluon hot spots.  
Fluctuation cross section t-slope is 

comparable soft physics, in particular 
spin flip contribution 
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CONCLUSIONS 

Gap physics with J/psi promising direction for studying in ultra peripheral collisions

NLO BFKL dynamics in a wide range of virtualities predicts fast energy dependence

 

t=0 inel/el tests onset of black regime
Good Walker model is justified (as a useful model for t close to 0)

Interesting nuclear effects
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Easier to measure with improved rapidity

 acceptance of the LHC detectors
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