Primordial black hole formation during supercooled phase transitions

Yann Gouttenoire (feat. Tomer Volansky)

IFT Madrid

Instituto de Física Teórica UAM-CSIC

Postdoc in Tel Aviv U.

10th October 2022

Supercooled 1stOPT

What kind of particle physics model lead to supercooling?

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

POLYNOMIAL POTENTIAL

VS

NEARLY-CONFORMAL POTENTIAL

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

 $V(\phi) = D(T^2 - 0)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4 \log\left(\frac{\phi}{\phi_*}\right)$

 O_3 bounce action

POLYNOMIAL POTENTIAL

VS

NEARLY-CONFORMAL POTENTIAL

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

 $V(\phi) = D(T^2 - 0)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4 \log\left(\frac{\phi}{\phi_*}\right)$

 O_3 bounce action

POLYNOMIAL POTENTIAL

VS

NEARLY-CONFORMAL POTENTIAL

 $V(\phi) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4$

 $V(\phi) = D(T^2 - 0)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4 \log\left(\frac{\phi}{\phi_*}\right)$

TAKE HOME : Supercooled phase transitions arises in presence of FLAT direction, are STRONG and SLOW

NEARLY-CONFORMAL POTENTIAL

$$V(\phi) = D(T^2 - 0)\phi^2 - ET\phi^3 + \frac{\lambda}{4}\phi^4 \log\left(\frac{\phi}{\phi_*}\right)$$

Cosmological consequences of supercooling
Cosmological consequences of supercooling

1) Large GW spectrum

Cosmological consequences of supercooling

1) Large GW spectrum

2) Dilution of relics

2) Dilution of relics

3) Relativistic bubble walls

Cosmological consequences of supercooling

2) Dilution of relics

3) Relativistic bubble walls

4) High energy particle production

Cosmological consequences of supercooling

2) Dilution of relics

3) Relativistic bubble walls

4) High energy particle production

5) Primordial black hole production

Cosmological consequences of supercooling

Randall, Servant 06'

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\gamma} h^2 \times \left(\frac{\alpha}{1+\alpha}\right)^2 \times \left(\frac{H}{\beta}\right)^2 \times v_w^3$

Randall, Servant 06'

 10^{-5}

1) Large GW spectrum

Randall, Servant 06'

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\gamma} h^2 \times \left(\frac{\alpha}{1+\alpha}\right)^2 \times \left(\frac{H}{\beta}\right)^2 \times v_w^3$

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\gamma} h^2 \times \left(\frac{\alpha}{1+\alpha}\right)^2 \times \left(\frac{H}{\beta}\right)^2 \times v_w^3$

10^{-5} $\alpha \gg 1$

1) Large GW spectrum

Randall, Servant 06'

10^{-5}

1) Large GW spectrum

Randall, Servant 06'

 $\Omega_{\rm GW} h^2 \simeq \Omega_{\gamma} h^2 \times \left(\frac{\alpha}{1+\alpha}\right)^2 \times \left(\frac{H}{\beta}\right)^2 \times v_w^3$

Bubble size

10^{-5}

1) Large GW spectrum

Randall, Servant 06'

Bubble size **Bubble wall velocity**

10^{-5}

 $\Omega_{\rm GW} h^2 \simeq 10^{-8}$

1) Large GW spectrum

Randall, Servant 06'

Bubble wall velocity Bubble size

Scalar field fraction

 $\Omega_{\rm GW} h^2 \simeq 10^{-8}$

1) Large GW spectrum

Randall, Servant 06'

Bubble size

Bubble wall velocity

Baldes, YG, Sala, Servant 21'

Evade unitarity bound on thermal DM

Evade unitarity bound on thermal DM

Warped fifth dimension

Evade unitarity bound on thermal DM

(Hambye, Strumia, Teresi 18')

Warped fifth dimension

Weakly-coupled

Evade unitarity bound on thermal DM

8

 $\Delta V_{\rm vac} \simeq T_c^4$

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

Bodeker, Moore 09'

3) Relativistic bubble walls

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

Bodeker, Moore 09'

Symmetric phase

Broken phase

Bodeker, Moore 17'

(Perturbative level)

c

Wall

 $\Delta V_{\rm vac} \simeq T_c^4$

 $\mathscr{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

Bodeker, Moore 09'

Bodeker, Moore 17'

(Perturbative level)

YG, Jinno, Sala 21' Baldes, YG, Sala 20'

(Sudakov resummation) (Gluon string description)

 $\Delta V_{\rm vac} \simeq T_c^4$

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

Bodeker, Moore 09'

 $\mathscr{P}_{\rm NLO} \simeq g_{\rm w} \gamma \Delta m T_{\rm nuc}^3$

Bodeker, Moore 17'

(Perturbative level)

YG, Jinno, Sala 21' Baldes, YG, Sala 20' (Sudakov resummation) (Gluon string description)

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

Bodeker, Moore 09'

Bodeker, Moore 17'

(Perturbative level)

YG, Jinno, Sala 21' Baldes, YG, Sala 20' (Sudakov resummation) (Gluon string description)

There is still a gauge invariance problem

Hoche, Kozaczuk, Long, Turner, Wang 20' An attempt:

a) Weak interaction with plasma

4) High energy particle production

a) Weak interaction with plasma

4) High energy particle production

b) Strong interaction with plasma

Baldes, YG, Sala 20'

Maximilian Dichtl and Filippo Sala (to appear)

a) Weak interaction with plasma

c) Wall decay (YG)

$$\frac{\partial^2 \phi}{\partial^2 s} + \frac{3}{s} \frac{\partial \phi}{\partial s} + \frac{\partial V}{\partial \phi} = 0$$

4) High energy particle production

b) Strong interaction with plasma

Baldes, YG, Sala 20'

Maximilian Dichtl and Filippo Sala (to appear)

a) Weak interaction with plasma

c) Wall decay (YG)

$$\frac{\partial^2 \phi}{\partial^2 s} + \left(\frac{3}{s} + \Gamma_{\phi}\right) \frac{\partial \phi}{\partial s} + \frac{\partial V}{\partial \phi} = 0$$

b) Strong interaction with plasma

Baldes, YG, Sala 20'

Maximilian Dichtl and Filippo Sala (to appear)

a) Weak interaction with plasma

c) Wall decay (YG)

$$\frac{\partial^2 \phi}{\partial^2 s} + \left(\frac{3}{s} + \Gamma_{\phi}\right) \frac{\partial \phi}{\partial s} + \frac{\partial V}{\partial \phi} = 0$$

b) Strong interaction with plasma

Maximilian Dichtl and Filippo Sala (to appear)

d) Unruh radiation (YG)

a) Weak interaction with plasma

c) Wall decay (YG)

$$\frac{\partial^2 \phi}{\partial^2 s} + \left(\frac{3}{s} + \Gamma_{\phi}\right) \frac{\partial \phi}{\partial s} + \frac{\partial V}{\partial \phi} = 0$$

b) Strong interaction with plasma

Maximilian Dichtl and Filippo Sala (to appear)

d) Unruh radiation (YG)

e) Dynamical Casimir (YG)

tevatron

TeV scale

tevatron

TeV scale

bubbletron

5) Primordial black hole production
Liu, Bian, Cai, Guo, Wang 21'

YG, Volansky (to appear)

ig 21' ear)

today

Liu, Bian, Cai, Guo, Wang 21'

YG, Volansky (to appear)

Past light-cone

Madrid

ig 21[°] ear)

today

Liu, Bian, Cai, Guo, Wang 21'

YG, Volansky (to appear)

Past light-cone

Madrid

EW scale T = 100 GeV

ig 21[°] ear)

today

 $T = 100 \,\,{\rm GeV}$

Liu, Bian, Cai, Guo, Wang 21'

YG, Volansky (to appear)

Past light-cone

Madrid

$\frac{(aH)_0^3}{(aH)_{\rm EW}^3} \sim 10^{40} \text{ Hubble patches}$

today

T = 100 GeV

today

T = 100 GeV

today

When phase transition takes place?

 t_{n_i} / t_c

today

T = 100 GeV

today

today

T = 100 GeV

reheating

 t_c t

 t_c t

$$t / t_c$$

 t_c

 t_c

 t_c t

 t_c

The survival probability

 t_{n_i} / t_c

$$\frac{P_{\text{PBH}}}{a_{,0}} = \frac{P_{\text{PBH}}}{3 \times 10^{-11}} \left(\frac{T_c}{100 \text{ GeV}} \right)$$
$$\Gamma(t')a(t')^3 \left(\frac{1}{a(t_f^{\text{PBH}})H(t_f^{\text{PBH}})} \right)^3 \right]$$

$$f_{\rm PBH} \equiv \frac{\rho_{\rm PBH}}{\rho_{\rm DM}} = P_{\rm PBH} \frac{M_{\rm PBH} \mathcal{N}_{\rm patches}}{\frac{4\pi}{3} H_0^{-3}} \frac{1}{\rho_{\rm DM,0}} = \frac{P_{\rm PBH}}{3 \times 10^{-11}} \left(\frac{T_c}{100 \text{ GeV}}\right)$$

with $P_{\rm PBH} = P\left(t_{n_i}^{\rm PBH}\right) = \exp\left[-\frac{4\pi}{3} \int_{t_c}^{t_{n_i}} dt' \Gamma(t') a(t')^3 \left(\frac{1}{a(t_f^{\rm PBH}) H(t_f^{\rm PBH})}\right)^3\right]$

with $t_{n_i}^{\text{PBH}}$ the minimum value such that there is a t_f^{PBH} solution of :

$$\left(\frac{\rho_{\mathrm{R}}(t, t_{n_{i}}^{\mathrm{PBH}}) - \rho_{\mathrm{R}}(t, t_{c})}{\rho_{\mathrm{R}}(t, t_{c})} \right)_{t=t_{f}^{\mathrm{PBH}}} \equiv \delta \,.$$

$$f_{\rm PBH} \equiv \frac{\rho_{\rm PBH}}{\rho_{\rm DM}} = P_{\rm PBH} \frac{M_{\rm PBH} \mathcal{N}_{\rm patches}}{\frac{4\pi}{3} H_0^{-3}} \frac{1}{\rho_{\rm DM,0}} = \frac{P_{\rm PBH}}{3 \times 10^{-11}} \left(\frac{T_c}{100 \text{ GeV}}\right)$$

with $P_{\rm PBH} = P\left(t_{n_i}^{\rm PBH}\right) = \exp\left[-\frac{4\pi}{3} \int_{t_c}^{t_{n_i}} dt' \Gamma(t') a(t')^3 \left(\frac{1}{a(t_f^{\rm PBH}) H(t_f^{\rm PBH})}\right)^3\right]$

with $t_{n_i}^{\text{PBH}}$ the minimum value such that there is a t_f^{PBH} solution of : $\left(\frac{\rho_{\rm R}(t, t_{n_i}^{\rm PBH}) - \rho_{\rm R}(t, t)}{\rho_{\rm R}(t, t_c)}\right)$

with $\rho_R(t, t_{n_i})$ is solution of $\rho'_R(t) + 4$

 $F(t, t_{n_i}) =$

$$\frac{t_c}{dt} = \delta.$$

$$H(t)\rho_{\rm R}(t) = -\Delta V \frac{dF(t, t_{n_i})}{dt} \qquad H^2(t) = \frac{\rho_{\rm R}(t) + \Delta VF(t)}{3M_{\rm pl}}$$

$$\exp\left[-\int_{t_{n_i}}^t dt' \Gamma(t') a^3(t') \times \frac{4\pi}{3} \left(\int_{t'}^t \frac{d\tau}{a(\tau)}\right)^3\right]$$

lpha

Supercooling from a nearly conformal sector

Nearly-conformal EW sector

YG, Volansky (to appear)

Nearly-conformal EW sector

$\mathcal{L}_{ ext{tree}} = -rac{1}{4} \left(F_{\mu u} ight)^2 + \left|D_{\mu}\Phi ight|^2 - \lambda_h |H|^4$

YG, Volansky (to appear)

$$^4 + \lambda_\sigma |\phi|^4 - \lambda_{h\sigma} \phi^2 H^2$$

Nearly-conformal EW sector

$$\mathcal{L}_{\text{tree}} = -\frac{1}{4} \left(F_{\mu\nu} \right)^2 + \left| D_{\mu} \Phi \right|^2 - \lambda_h |H|^4 + \lambda_\sigma |\phi|^4 - \lambda_{h\sigma} \phi^2 H^2$$

$$V(\phi) = \beta_\lambda \frac{\phi^4}{4} \left[\log \left(\frac{\phi}{f} \right) - \frac{1}{4} \right] \qquad \beta_\lambda = \frac{1}{8\pi^2} \left(\frac{9g_{\text{D}}^4}{16} - \frac{9g_{\text{D}}^2 \lambda_\sigma}{2} + \lambda_{h\sigma}^2 + 12\lambda_\sigma^2 \right) \simeq \frac{9}{8} \alpha_{\text{D}}^2.$$

YG, Volansky (to appear)

Nearly-conformal EW sector

YG, Volansky (to appear)

Nearly-conformal EW sector

YG, Volansky (to appear)

Nearly-conformal EW sector

$$\mathcal{L}_{\text{tree}} = -\frac{1}{4} \left(F_{\mu\nu} \right)^2 + \left| D_{\mu} \Phi \right|^2 - \lambda_h |H|^4 + \lambda_\sigma |\phi|^4 - \lambda_{h\sigma} \phi^2 H^2$$

$$V(\phi) = \beta_\lambda \frac{\phi^4}{4} \left[\log \left(\frac{\phi}{f} \right) - \frac{1}{4} \right] \qquad \beta_\lambda = \frac{1}{8\pi^2} \left(\frac{9g_{\text{D}}^4}{16} - \frac{9g_{\text{D}}^2 \lambda_\sigma}{2} + \lambda_{h\sigma}^2 + 12\lambda_\sigma^2 \right) \simeq \frac{9}{8} \alpha_{\text{D}}^2.$$

Coleman–Weinberg potential

YG, Volansky (to appear)

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Theoretical Particle Physics and Cosmology

For graduate students and researchers **Beyond the Standard Model Cocktail** A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Theoretical Particle Physics and Cosmology

500 pages, 2400 references, review of numerous BSM topics

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Theoretical Particle Physics and Cosmology

Standard Mode

1	Fields and symmet
1.1	The Lorentz represen
1.2	The gauge interaction
1.3	The matter content .
1.4	The Higgs field
2	The Standard Mode
2.1	The Lagrangian
2.2	Quantum Chromody
2.3	Electroweak Symme
2.4	Weak CP violation
2.5	Anomaly cancellation
2.6	Strong CP violation .
3	Open problems
3.1	Hierarchy problem .
3.2	Neutrino oscillations
3.3	Flavor bierarchy prob

Strong CP problem

For graduate students and researchers **Beyond the Standard Model Cocktail** A modern and comprehensive review of the major open

puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Theoretical Particle Physics and Cosmology

of Elementary Particles	23
ries	24
tations	24
ns	25
	25
	26
el in a nutshell	27
	27
namics	28
ry Breaking	32
	35
'n	38
	39
4	43
	43
	52
olem	56
	57

2	Standard Model of Elementary Particles	23
2.1	Fields and symmetries	24
2.1.1	The Lorentz representations	24
2.1.2	The gauge interactions	25
2.1.3	The matter content	25
2.1.4	The Higgs field	26
2.2	The Standard Model in a nutshell	27
2.2.1	The Lagrangian	27
2.2.2	Quantum Chromodynamics	28
2.2.3		32 35
2.2.4	Anomaly cancellation	38
2.2.6	Strong CP violation	39
2.3	Open problems	43
2.3.1	Hierarchy problem	43
2.3.2	Neutrino oscillations	52
2.3.3	Flavor hierarchy problem	56
2.3.4	Strong CP problem	57
	Standard Model of Cosmology	33
.1	The Λ CDM cosmological model	35
1.1	A homogeneous and isotropic expanding universe	85
.1.2	Energy content of the universe	86
.2	The hot big-bang scenario	87
.2.1	Thermal equilibrium	87
.2.2	Beyond thermal equilibrium	89
.3	Inflation	91
.3.1	The homogeneity problem	91
.3.2	The flatness problem	92
.3.3	The solution: shrinking the comoving Hubble radius	92
.3.4	Slow-roll inflation	93
.4	Gravitational waves of primordial origin	97
.4.1	Linearized wave solutions of Einstein equations	97
.4.2	Energy of gravitational-waves	99
.4.3	Cosmological signals 1	01
.5	Open problems 1	04
.5.1	Cosmological constant problem 1	05
.5.2	Matter-anti-matter asymmetry 1	10
.5.3	Dark Matter puzzle 1	15
.5.4	The fragility of ΛCDM	20
.5.5	The Hubble tension	31
		~ ~

3.5.6 The 21-cm anomaly 133

For graduate students and researchers

Beyond the Standard Model Cocktail

A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Theoretical Particle Physics and Cosmology

2	Standard Model of Elementary Particles	. 23
2.1	Fields and symmetries	24
2.1.1	The Lorentz representations	. 24
2.1.2	The gauge interactions	. 25
2.1.3	The matter content	. 25
2.1.4	The Higgs field	. 26
2.2	The Standard Model in a nutshell	27
2.2.1		. 27
2.2.2 2.2.3	Electroweak Symmetry Breaking	. 28
2.2.4	Weak CP violation	. 35
2.2.5	Anomaly cancellation	. 38
2.2.6	Strong CP violation	. 39
2.3	Open problems	43
2.3.1	Hierarchy problem	. 43
2.3.2	Neutrino oscillations	. 52
2.3.3	Strong CP problem	. 50
2.0.4		. 0/
8	Standard Model of Cosmology	83
		05
). I	A homogeneous and isotropic expanding universe	00 85
1.1	Energy content of the universe	86
). 1.Z	The bet big bang seengrie	. 00 97
9.2	Thermal equilibrium	87
3.2.2	Bevond thermal equilibrium	. 89
3.3	Inflation	91
3.3.1	The homogeneity problem	9 1
3.3.2	The flatness problem	. 92
3.3.3	The solution: shrinking the comoving Hubble radius	. 92
3.3.4	Slow-roll inflation	. 93
3.4	Gravitational waves of primordial origin	97
8.4.1	Linearized wave solutions of Einstein equations	. 97
3.4.2	Energy of gravitational-waves	. 99
8.4.3	Cosmological signals	101
8.5	Open problems	104
8.5.1	Cosmological constant problem	105
3.5.2	Matter-anti-matter asymmetry	110
3.5.3 D E 4		115
855		120
8.5.6	The 21-cm anomaly	133
•	The sum of Devide Menther	
•		189
.1	Production mechanism	189
.1.1		189
1.2		191
. 1.3 I 2		194
•. ∠	Methydrians	106
22	The WIMP abundance	190
.2.3	Minimal WIMP under pressure	197
.2.4	Warm Dark Matter	199
.3	Heavy WIMP	202
.3.1	Breakdown of perturbation theory	202
.3.2	Sommerfeld enhancement	204
.3.3	Bound-state-formation	206
.3.4	The unitary bound	208

.1	Production mechani
.1.1	The Boltzmann equation
.1.2	Freeze-in versus Freeze
.1.3	Exceptions
.2	The WIMP paradigm
.2.1	Motivations
.2.2	The WIMP abundance
.2.3	Minimal WIMP under p
.2.4	Warm Dark Matter
.3	Heavy WIMP
.3.1	Breakdown of perturbo
.3.2	Sommerfeld enhancer
.3.3	Bound-state-formation

For graduate students and researchers

Beyond the Standard Model Cocktail

A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Description Springer

Theoretical Particle Physics and Cosmology

_		
2	Standard Model of Elementary Particles	2
2.1	Fields and symmetries	2
2.1.1	The Lorentz representations	2
2.1.2		2
2.1.3	The Higgs field	2
2.1.4 2.2	The Standard Model in a putchell	2
2.2 221		2
2.2.1	Quantum Chromodynamics	2
2.2.3	Electroweak Symmetry Breaking	3
2.2.4	Weak CP violation	3
2.2.5	Anomaly cancellation	3
2.2.6	Strong CP violation	3
2.3	Open problems	4
2.3.1	Hierarchy problem	4
2.3.2	Neutrino oscillations	5
2.3.3		5 5
2.0.4		0
	Standard Model of Cosmology	02
		05 05
). I	Ine ACDM cosmological model	85
		85
3.1.2		80
3.2	The hot big-bang scenario	87
3.2.1		87
3.2.2		89
3.3	Inflation	91
3.3.1	The homogeneity problem	91
3.3.2		92
3.3.3	Ine solution: snrinking the comoving Hubble radius	92
0.3.4		93
5.4	Gravitational waves of primoralal origin	97
3.4. I	Linearized wave solutions of Einstein equations	97
0.4.Z		99 101
0.4.3		
5.5 	Open problems	04
5.5. I		105
0.0.Z		
854	The fragility of ACDM	120
3.5.5	The Hubble tension	131
3.5.6	The 21-cm anomaly	33
	Theorem of Develo Mantheor	_
•	Inermal Dark Matter	89
.1	Production mechanism 1	89
.1.1	The Boltzmann equation 1	89
.1.2	Freeze-in versus Freeze-out 1	91
.1.3	Exceptions 1	94
.2	The WIMP paradigm 1	96
.2.1	Motivations 1	96
.2.2	The WIMP abundance	96
.2.3	Minimal WIMP under pressure	97
.2.4		99
.3	Heavy WIMP 2	02
.3.1	Breakdown of perturbation theory	.02
.3.2		.04
3.3	Bound-state-tormation	00.
		.ud

.1	Production mechani
.1.1	The Boltzmann equation
.1.2	Freeze-in versus Freeze
.1.3	Exceptions
.2	The WIMP paradigm
.2.1	Motivations
.2.2	The WIMP abundance
.2.3	Minimal WIMP under p
.2.4	Warm Dark Matter
.3	Heavy WIMP
.3.1	Breakdown of perturbo
.3.2	Sommerfeld enhancer
.3.3	Bound-state-formation

For graduate students and researchers

Beyond the Standard Model Cocktail

A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Description Springer

Theoretical Particle Physics and Cosmology

Available at Springer very soon (200\$) or for free on ArXiv

	. 27
	. 28
y Breaking	. 32
	. 35
n	. 38
	. 39
	43
	. 43
	. 52

•	•	•		•	•			•	•			•	•	•	•	•	•	•			•			•	•	•	•	•			Ę	5
le	Э	n	n																												Ę	50
	•			•			•					•									•										Ę	5

6	First-order Cosmological Phase Transition	277
6.1	Bubble nucleation	278
6.1.1	Effective potential at finite temperature	278
6.1.2	Tunneling rate	282
6.1.3	Thin-wall and thick-wall limits	285
6.1.4	Temperature at which the phase transition completes	288
6.2	Bubble propagation	289
6.2.1	Equation of motion for the scalar field	290
6.2.2	Friction pressure at local thermal equilibrium	292
6.2.3	Friction pressure close to local thermal equilibrium	294
6.2.4	Friction pressure in the ballistic approximation	295
6.2.5	Friction pressure at NLO	299
6.2.6	Speed of the wall	302
6.3	GW generation	305
6.3.1	The GW spectrum for a generic source	306
6.3.2	Contribution from the scalar field	308
6.3.3	Contributions from sound waves and turbulence	312
6.3.4	Energy transfer to sound-waves	313
6.4	Supercooling from a nearly-conformal sector	320
6.4.1	Weakly-coupled scenario: the Coleman-Weinberg potential	320
6.4.2	Strongly-coupled scenario: the light-dilaton potential	326

2	Standard Model of Elementary Particles	. 23
2.1	Fields and symmetries	24
2.1.1	The Lorentz representations	. 24
2.1.2	The gauge interactions	. 25
2.1.3	The Higgs field	. 20 . 26
2.2	The Standard Model in a nutshell	27
2.2.1	The Laaranajan	. 27
2.2.2	Quantum Chromodynamics	. 28
2.2.3	Electroweak Symmetry Breaking	. 32
2.2.4		. 35
2.2.5		. 30 .30
2.2.0	Open problems	43
2.3.1	Hierarchy problem	. 43
2.3.2	Neutrino oscillations	. 52
2.3.3	Flavor hierarchy problem	. 56
2.3.4	Strong CP problem	. 57
2	Standard Medel of Cosmology	0.2
3	standard wodel of Cosmology	83
3.1	The ACDM cosmological model	85
3.1.1		85
3.1.2	The bet big bang seep grie	80 87
3.2	The arm of a gruilibrium	87
322	Bevond thermal equilibrium	07 80
3 3		07
3.3 3.3 1	The homogeneity problem	71
3.3.2	The flatness problem	92
3.3.3	The solution: shrinking the comoving Hubble radius	92
3.3.4	Slow-roll inflation	93
3.4	Gravitational waves of primordial origin	97
3.4.1	Linearized wave solutions of Einstein equations	97
3.4.2	Energy of gravitational-waves	99
3.4.3	Cosmological signals	101
3.5	Open problems	104
3.5.1	Cosmological constant problem	105
3.5.2	Matter-anti-matter asymmetry	110
3.5.3		115
355		120
3.5.6	The 21-cm anomaly	133
Λ	Thormal Dark Matter	
4		89
4.1	Production mechanism	89
4.1.1		189
4.1.2		191
4.1.3 A 2		194 1 06
4.2	Mativations	106
4.2.1	The WIMP abundance	196
4.2.3	Minimal WIMP under pressure	197
4.2.4	Warm Dark Matter	199
4.3	Heavy WIMP 2	202
4.3.1	Breakdown of perturbation theory	202
4.3.2	Sommerfeld enhancement	204
4.3.3	Bound-state-formation	206
4.3.4	The unitary bound	208

.1	Production mechani
.1.1	The Boltzmann equation
.1.2	Freeze-in versus Freeze
.1.3	Exceptions
.2	The WIMP paradigm
.2.1	Motivations
.2.2	The WIMP abundance
.2.3	Minimal WIMP under p
.2.4	Warm Dark Matter
.3	Heavy WIMP
.3.1	Breakdown of perturbo
.3.2	Sommerfeld enhancer
.3.3	Bound-state-formation

For graduate students and researchers

Beyond the Standard Model Cocktail

A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Springer

Theoretical Particle Physics and Cosmology

Available at Springer very soon (200\$) or for free on ArXiv

0.00																															E 4
		 																													52
		 																													43
																															43
		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
n		 																													38
		 																													35
y Breaking		 																													32
namics		 																													28
																											-	-		-	_

	First sector October 1 and Phase Trans With a	
0	First-order Cosmological Phase Iransition	277
6.1	Bubble nucleation	278
6.1.1	Effective potential at finite temperature	278
6.1.2	Tunneling rate	282
6.1.3	Thin-wall and thick-wall limits	285
6.1.4	Temperature at which the phase transition completes	288
6.2	Bubble propagation	289
6.2.1	Equation of motion for the scalar field	290
6.2.2	Friction pressure at local thermal equilibrium	292
6.2.3	Friction pressure close to local thermal equilibrium	294
6.2.4	Friction pressure in the ballistic approximation	295
6.2.5	Friction pressure at NLO	299
6.2.6	Speed of the wall	302
6.3	GW generation	305
6.3.1	The GW spectrum for a generic source	306
6.3.2	Contribution from the scalar field	308
6.3.3	Contributions from sound waves and turbulence	312
6.3.4	Energy transfer to sound-waves	313
6.4	Supercooling from a nearly-conformal sector	320
6.4.1	Weakly-coupled scenario: the Coleman-Weinberg potential	320
6.4.2	Strongly-coupled scenario: the light-dilaton potential	326

8	Gravitational Waves from Cosmic Strings	403
8.1	Introduction	403
8.2	Recap on Cosmic Strings	405
8.2.1	Microscopic origin of Cosmic Strings	405
8.2.2	Cosmic-string network formation and evolution	407
8.2.3	Decay channels of Cosmic Strings	410
8.2.4	Constraints on the string tension $G\mu$ from GW emission \ldots	413
8.3	Gravitational waves from cosmic strings	413
8.3.1	Beyond the Nambu-Goto approximation	413
8.3.2	Assumptions on the loop distribution	415
8.3.3	The gravitational-wave spectrum	418
8.3.4	The frequency - temperature relation	419
8.3.5	The astrophysical foreground	422
8.A	Constraints on cosmic strings from BBN, gravitational lensing, C	МВ
	and cosmic rays	441
8.A.1	GW constraints from BBN	441
8.A.2	Gravitational lensing	443
8.A.3	Temperature anisotropies in the CMB	443
8.A.4	Non-gravitational radiation	443
8.F	GW spectrum from global strings	457
8.F.1	The presence of a massless mode	457
8.F.2	Evolution of the global network	458
8.F.3	The GW spectrum	458
8.F.4	Global versus local strings	460
8.F.5	As a probe of non-standard cosmology	461

2	Standard Model of Elementary Particles	. 23
2.1	Fields and symmetries	24
2.1.1 2.1.2	The Lorentz representations The gauge interactions	· 24 · 25
2.1.3	The matter content	. 25
2.1.4	The Higgs field	. 26
2.2	The Standard Model in a nutshell	27
2.2.1		. 27
2.2.2 2.2.3		. 20
2.2.5	Weak CP violation	. 35
2.2.5	Anomaly cancellation	. 38
2.2.6	Strong CP violation	. 39
2.3	Open problems	43
2.3.1	Hierarchy problem	. 43
2.3.2		. 52
2.3.3	Flavor hierarchy problem	. 56
2.3.4		. 5/
	Standard Model of Cosmology	92
		05 0E
). I	A homogopoous and isotropic expanding universe	85
. 1. 1		00
o. 1.2		00
5.2	The arrest of a sublibutions	8/ 07
5.Z.I	Revend thermal equilibrium	87
2.2.2		07
	The homogeneity problem	71
3.3.2		91
3.3.3	The solution: shrinking the comoving Hubble radius	92
3.3.4	Slow-roll inflation	93
3.4	Gravitational waves of primordial origin	97
3.4.1	Linearized wave solutions of Einstein equations	97
3.4.2	Energy of gravitational-waves	99
8.4.3		101
8.5	Open problems	104
3.5.1	Cosmological constant problem	105
8.5.2	Matter-anti-matter asymmetry	110
8.5.3	Dark Matter puzzle	115
8.5.4	The fragility of ΛCDM	120
8.5.5	The Hubble tension	131
8.5.6	The 21-cm anomaly	133
۱	Thermal Dark Matter	89
.1	Production mechanism	89
.1.1	The Boltzmann equation	189
.1.2	Freeze-in versus Freeze-out	191
.1.3	Exceptions	194
.2	The WIMP paradigm	96
.2.1	Motivations	196
.2.2	The WIMP abundance	196

gical model enario 87 97 of primordial origin 101 104 symmetry 110 atter 189 ism 196 202

.1	Production mechani
.1.1	The Boltzmann equation
.1.2	Freeze-in versus Freeze
.1.3	Exceptions
.2	The WIMP paradigm
.2.1	Motivations
.2.2	The WIMP abundance
.2.3	Minimal WIMP under p
.2.4	Warm Dark Matter
.3	Heavy WIMP
.3.1	Breakdown of perturbo
.3.2	Sommerfeld enhancer
.3.3	Bound-state-formation

For graduate students and researchers

Beyond the Standard Model Cocktail

A modern and comprehensive review of the major open puzzles in theoretical particle physics and cosmology

Yann Gouttenoire

Forewords of Géraldine Servant and Filippo Sala

Springer

Theoretical Particle Physics and Cosmology

Available at Springer very soon (200\$) or for free on ArXiv

l of Elementary Particles 23 el in a nutshell

	•							•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•			•		35
n																																			38
																																			39
																																			43
																																			43
																																			52
le	m	۱											•			•	•	•		•				•						•	•	•	•	•	50

6	First-order Cosmological Phase Transition	277
6.1	Bubble nucleation	278
6.1.1	Effective potential at finite temperature	278
6.1.2	Tunneling rate	282
6.1.3	Thin-wall and thick-wall limits	285
6.1.4	Temperature at which the phase transition completes	288
6.2	Bubble propagation	289
6.2.1	Equation of motion for the scalar field	290
6.2.2	Friction pressure at local thermal equilibrium	292
6.2.3	Friction pressure close to local thermal equilibrium	294
6.2.4	Friction pressure in the ballistic approximation	295
6.2.5	Friction pressure at NLO	299
6.2.6	Speed of the wall	302
6.3	GW generation	305
6.3.1	The GW spectrum for a generic source	306
6.3.2	Contribution from the scalar field	308
6.3.3	Contributions from sound waves and turbulence	312
6.3.4	Energy transfer to sound-waves	313
6.4	Supercooling from a nearly-conformal sector	320
6.4.1	Weakly-coupled scenario: the Coleman-Weinberg potential	320
6.4.2	Stronaly-coupled scenario: the light-dilaton potential	326

8	Gravitational Waves from Cosmic Strings	403
8.1	Introduction	403
8.2	Recap on Cosmic Strings	405
8.2.1	Microscopic origin of Cosmic Strings	. 405
8.2.2	Cosmic-string network formation and evolution	. 407
8.2.3	Decay channels of Cosmic Strings	. 410
8.2.4	Constraints on the string tension $G\mu$ from GW emission \ldots	. 413
8.3	Gravitational waves from cosmic strings	413
8.3.1	Beyond the Nambu-Goto approximation	. 413
8.3.2	Assumptions on the loop distribution	. 415
8.3.3	The gravitational-wave spectrum	. 418
8.3.4	The frequency - temperature relation	. 419
8.3.5	The astrophysical foreground	. 422
8.A	Constraints on cosmic strings from BBN, gravitational lensing, C	МВ
8.A	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays	CMB 441
8.A 8.A.1	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN	MB 441 441
8.A 8.A.1 8.A.2	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing	MB 441 441 443
8.A .1 8.A.2 8.A.3	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB	MB 441 441 443 443
8.A.1 8.A.2 8.A.3 8.A.4	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation	MB 441 443 443 443
8.A.1 8.A.2 8.A.3 8.A.4 8.F	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation	CMB 441 443 443 443 443 443
 8.A.1 8.A.2 8.A.3 8.A.4 8.F 8.F.1 	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation Non-gravitational radiation	 MB 441 443 443 443 443 443 443 443 443
8.A.1 8.A.2 8.A.3 8.A.4 8.F 8.F1 8.F.1 8.F.2	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation Non-gravitational radiation The presence of a massless mode Evolution of the global network	 MB 441 443 443 443 443 443 443 443 443 457 457 458
8.A.1 8.A.2 8.A.3 8.A.4 8.F 8.F.1 8.F.2 8.F.3	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation GW spectrum from global strings The presence of a massless mode Evolution of the global network The GW spectrum	 MB 441 443 444 444
8.A.1 8.A.2 8.A.3 8.A.4 8.F 8.F.1 8.F.1 8.F.2 8.F.3 8.F.4	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation Non-gravitational radiation Me presence of a massless mode Evolution of the global network The GW spectrum Global versus local strings	 MB 441 443 444 444
8.A.1 8.A.2 8.A.3 8.A.4 8.F 8.F1 8.F1 8.F2 8.F3 8.F.3 8.F.4 8.F.5	Constraints on cosmic strings from BBN, gravitational lensing, C and cosmic rays GW constraints from BBN Gravitational lensing Temperature anisotropies in the CMB Non-gravitational radiation Non-gravitational radiation GW spectrum from global strings The presence of a massless mode Evolution of the global network The GW spectrum Global versus local strings As a probe of non-standard cosmology	 MB 441 443 444 444

1) Large GW spectrum: large α and small β/H

3) Relativistic bubble walls because plasma is diluted

- Supercooled phase transitions arises in presence of FLAT direction

 - 2) Dilution of relics due to entropy injection following reheating
 - 4) High energy particle production because relativistic bubble walls
 - 5) Primordial black hole production because expansion of the universe controlled by low number of randomly nucleated bubbles

Additional slides

Nearly-conformal dark $U(1)_D$: $\mathcal{L}_{\text{tree}} = -\frac{1}{\Lambda} \left(F_{\mu\nu} \right)^2 + \left| D_{\mu} \Phi \right|^2 + \overline{\psi} D_{\mu} \Phi$

 $V_{\text{tree}}(|\Phi|) = \lambda |\Phi|^4 + \lambda_{\phi h} |H|^2 |\Phi|^2,$

1-loop Coleman-Weinberg corrections at T=0: $V(\phi) = \beta_{\lambda} \frac{\phi^4}{4} \left[\log \left(\frac{\phi}{f} \right) - \frac{1}{4} \right].$

1-loop Dolan-Jackiw corrections at finite-T:

$$V_T(\sigma, T) = V_{1-\text{loop}}^T + V_{\text{Daisy}} = \frac{3T^4}{2\pi^2} J_B\left(\frac{m_V^2}{T^2}\right) + \frac{T}{12\pi} \left[m_V^3 - \left(m_V^2 + \Pi_V\right)^{3/2}\right]$$

Supercooling from a nearly conformal sector

$$_{\iota}\psi - \left(y\Phi\overline{\psi}_{L}\psi_{R} + ext{h.c.}
ight) - V_{ ext{tree}}(|\Phi|),$$

$$\beta_{\lambda} = \frac{d\lambda}{d\log\phi} = \frac{1}{8\pi^2} \left(12g_{\rm D}^4 + 12\lambda^4 + 4\lambda_{hs}^4 - 4y^4 \right)$$

Supercooling from a nearly conformal sector

Thick-wall formula:

$$\frac{S_3}{T} \simeq \frac{A}{\log\left(\frac{M}{T}\right)}$$

alpha and beta parameters:

 $\beta/H \simeq -$

 $\alpha = -$

with
$$A = \frac{78}{g_D^3}$$
 and $M = 0.35 g_D f$.
 $\frac{\Delta V}{\rho_{\rm rad}(T_{\rm nuc})} \simeq 2 \times 10^{-4} \frac{100}{g_*} \left(\frac{M_X}{T_{\rm nuc}}\right)^4$,
 $-4 + T \frac{d(S_3/T)}{dT}\Big|_{T_{\rm nuc}} = -4 + \frac{S_3/T}{\log \frac{M}{T}}\Big|_{T_{\rm nuc}} = -4 + \frac{A}{\log^2}$

Large GW signal

$\mathscr{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

 $\Delta p = ?$

$\mathscr{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

 $\Delta p = ?$

Weakly-coupled PT

 $\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

$\mathscr{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

$\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathscr{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2 \qquad \mathscr{P}_{\rm NLO} \simeq g_{\rm w} \gamma \Delta m T_{\rm nuc}^3$

$\mathscr{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

$\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathscr{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2 \qquad \mathscr{P}_{\rm NLO} \simeq g_{\rm w} \gamma \Delta m T_{\rm nuc}^3$

$\mathcal{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

$\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathscr{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2 \qquad \mathscr{P}_{\rm NLO} \simeq g_{\rm w} \gamma \Delta m T_{\rm nuc}^3$

$\mathcal{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

$\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathscr{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2 \qquad \mathscr{P}_{\rm NLO} \simeq g_{\rm w} \gamma \Delta m T_{\rm nuc}^3 \qquad \vdots$

$\mathscr{P}_{\text{friction}} \simeq \gamma T_{\text{nuc}}^3 \times \Delta p$

$\Delta p = ?$

Weakly-coupled PT

Bodeker&Moore (09' and 17') Azatov+ 20'

 $\mathscr{P}_{\text{LO}} \simeq \Delta m^2 T_{\text{nuc}}^2 \qquad \mathscr{P}_{\text{NLO}} \simeq g_{\text{w}} \gamma \Delta m T_{\text{nuc}}^3 \qquad \vdots$

Deep Inelastic Scattering in the Early Universe

Hadron energy in plasma (= CMB) frame

We find dominant scatterers in (p)reheated bath at

$$E_{\rm cm}^{q\bar{q}} = |p_q + p_{\bar{q}}| \simeq \sqrt{E_q E_{\bar{q}}} \simeq \sqrt{\gamma_{wp} f T_{\rm nuc}}$$

$$\gamma_{\rm cp} \simeq \frac{\gamma_{\rm wp}}{\gamma_{\rm wc}} \qquad \qquad \gamma_{\rm wc} \simeq \frac{E_{\rm cm}^{q\bar{q}}}{f} \simeq \sqrt{\gamma_{\rm wp} \frac{T_{\rm nuc}}{f}}$$

$$E_{\text{hadrons, p}} \simeq \gamma_{\text{cp}} \frac{E_{\text{cm}}^{q\bar{q}}}{\langle N_{\text{hadron}} \rangle} \simeq \frac{\gamma_{\text{wp}}}{E_{\text{cm}}^{q\bar{q}}/f} \frac{E_{\text{cm}}^{q\bar{q}}}{\langle N_{\text{hadron}} \rangle} \simeq \frac{\gamma_{\text{wp}} f}{\langle N_{\text{hadron}} \rangle}$$

Dark Matter candidates

(WIMPs=Weakly-Interacting Massive

 $\overline{\mathrm{DM}}$ \longrightarrow V

DM

 $\sim V$

Homeopathic DM

Cirelli, Gouttenoire, Petraki, Sala, 2018

2) After an inflationary era

Supercooled confinement

ſ $N_e = \log$ nuc

Baldes, Gouttenoire, Sala, 2020

Nearly-conformal strong sector

Composite states $\supset DM$

CFT/Poincaré: dilaton σ - pNGB

SUPERCOOLING

Nearly-conformal strong sector

$$V_{\rm dec}(T) = -c N^2 T^4$$

Confined phase

$$V_{\text{conf}}(\sigma) = g_{\sigma}^{2} \sigma^{4} - \epsilon(\sigma) \sigma^{4}$$
$$\epsilon(\sigma) = g_{\sigma}^{2} \left(\frac{\sigma}{f}\right)^{\gamma_{e}}, \quad \gamma_{e} < 0$$

Super-cooling starts for: $T_{\text{start}} \sim f$

ends for: $T_{\text{nuc}} \sim c_1 f \operatorname{Exp} - c_2 \frac{f^2}{m_{\sigma}^2}$

Nearly-conformal strong sector

- Hyp: strong sector conformally invariant in the UV
 - Scale invariance explicitly broken by a slightly relevant operator $\mathscr{L} \supset \epsilon \ O_{\epsilon}$, $[O_{\epsilon}] = 4 + \gamma_{\epsilon}$

$$\rightarrow \quad \epsilon = g_{\sigma}^2 \left(\frac{\mu}{f}\right)^{\gamma_{\epsilon}}, \quad \gamma_{\epsilon} < 0$$

- \rightarrow Scale inv. spontanously broken
- \rightarrow pNGB: the dilation σ

$$V_{\rm conf}(\sigma) = \left(1 - \left(\frac{\sigma}{f}\right)^{\gamma_e}\right) g_\sigma^2 \sigma^4$$

Gravitational Waves from Supercool Phase Transition

$$\Omega_{\rm GW} \propto \left(\frac{H}{\beta}\right) \times \left(\frac{H}{\beta}\right)$$
Bubble size × Collision time
$$\frac{\beta}{H} \simeq T \frac{dS_4}{dT} \bigg|_{T_{\rm nuc}} \simeq 15 \left(\frac{10}{N_{\rm e-fold}}\right)^2$$

Standard 1st order PT

 $\beta/H \sim 100$

Randall Servant hep-ph/0607158,...

Supercooled PT $\beta/H \sim 10$

Gravitational Waves from Phase Transition

Nucleation Temperature

Supercooling begins at

Bubble nucleation ends SC at $T_{
m s}$

 $\Gamma(T_{\rm nuc})$

Bounce action $S_4 \approx 100$

 $T_{\rm start} \sim f$

$$F_{\rm nuc} \sim f \exp\left(-c \frac{f^2}{m_\sigma^2}\right)$$

Nucleation happens when tunnelling rate ~ Hubble

$$\sim H^4(T_{\rm nuc})$$

Tunneling rate
$$\Gamma \sim T^4 \left(\frac{S_4}{2\pi}\right)^2 e^{-S_4}$$

Nucleation Temperature

For small m_{σ} PT seem to never complete!

DM abundance after supercooling

Standard Supercooling

2 possibilities: Combi DM: ligh e.g. BR

Hambye, Strumía, Teresí 18 —> Baldes, Gouttenoíre, Sala, Servant 19

$$\times$$
 BR \times N_{frag}

Branching ratio quark -> DM

Inatoric	Thermal distrib.
nt meson	DM: heavy baryon
$\simeq 2/N_f^2$	$BR \propto \exp - m_{DM}/f$

DIS in the Sky: result

Brute force: iterate this untíl $E_{\rm CM} \sim \sqrt{TE_{\rm hadron}} = f$

O(1) fraction of initial hadron energy converted into hadron masses

1. String fragmentation + quark ejection

 $Y_{\rm DM} / Y_{\rm DM}^{\rm naive} \propto \log^n \left(\gamma_{wp} T_{\rm nuc} / f \right)$

2. Deep Inelastic Scattering

Consequences on DM abundance

1. String fragmentation + quark ejection

 $Y_{\rm DM} / Y_{\rm DM}^{\rm naive} \propto \log^n \left(\gamma_{wp} T_{\rm nuc} / f \right)$

2. Deep Inelastic Scattering

Consequences on DM abundance

Cosmological consequences

1. More hadrons per initial quark pair

Bubble wall

Interaction with other quarks ?

Bubble wall

Interaction with other quarks ?

Bubble wall

quark ejected

 $\Gamma_{\rm nucl} \sim f/N$

hadronisation

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

Bubble wall

Interaction with other quarks ?

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

Bubble wall

Interaction with other quarks ?

Bubble wall

Interaction with other quarks ?

Bubble wall

quark ejected

 $\Gamma_{\rm nucl} \sim f/N$

hadronisation

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

Bubble wall

Interaction with other quarks ?

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

Interaction with other quarks ?

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

Bubble wall

Interaction with other quarks ?

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

Bubble wall

Interaction with other quarks ?

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

Bubble wall

