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As with any other relic component in the Universe

Qow = paw/(3HG M)

GWs behave as additional
relativistic degrees of
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AXION QUALITY AT LIGO/VIRGO/KAGRA

a, Notari, Pujolas, FR: 2107.07542, PRL
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SEARCH IN PULSAR TIMING ARRAY DATASETS

a, Notari, Pujolas, FR: 2204.04228



PTA RESULTS

Current datasets show strong evidence for common-spectrum process
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PTA RESULTS

PTA collaborations model data in terms of single power-law signal
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PTA RESULTS

PTA collaborations model data in terms of single power-law signal
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SEARCH FOR GWS FROM DOMAIN WALLS
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SEARCH FOR GWS FROM DOMAIN WALLS
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transitions, Bian 20, Wang
21,22 for other searches

We performed the first “early Universe” search in multiple datasets (NG 12.5 yrs and IPTA DR2)

10.75 \ 3 / ay \2 |
() h? ~ 10! ( = )

Efficiency factor O(0.1-1) Spectral shape

From simulations
(Hiramatsu et al 13)

Useful parametrization

High frequency slope
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From simulations
(Hiramatsu et al 13),
Mild dependence on Ndw
Low frequency slope fixed by causality



SEARCH FOR GWS FROM DOMAIN WALLS

1077
DWs Bestfit
----- DWs, o, 8 =
1078y ----- SMBHBs

.
L B
.
.
PR

-

ey S
-~
S

By causality

i

Bl [PTA DR2
Bl NGI12

10~ 10
Frequency [Hz]
IPTA DR2 prefers region around peak,

NG 12.5 the large frequency tail



DOMAIN WALLS IN PTA DATASETS



DOMAIN WALLS IN PTA DATASETS

DWs+SMBHBS, Decay to SM

Including stochastic GWs from SMBH binaries,
marginalising over other parameters

Both sources fit data equally well!

1,20 contours
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DWs+SMBHBS, Decay to SM
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HEAVY AXION INTERPRETATION

Heavy Axion
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LHC Track Trigger

1-100 TeV scale
suggested for
Heavy confining dark
sector which generate
axion potential
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CURRENT (FUTURE) GW OBSERVATORIES CAN DISCOVER SOURCES THAT MAKE UP
AT LEAST > 5%(0.1%) OF THE BACKGROUND ENERGY DENSITY!
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Figure 8. One and Two-dimensional posterior distributions,
with 10 and 20 contours, of the parameters describing GWs
from heavy axion DWs. The posteriors on the size of the gap

energy ,ué/él are obtained using (6) and (B3).
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