

Marco Taoso INFN-Torino

Light Dark Matter and Long-Lived particles at accelerators

Beyond the Standard Models: Particle Physics Meets Cosmology

IFT UAM/CSIC Madrid 3-28 October 2022

Light dark matter

- lacktriangle Thermal freeze-out: DM abundance controlled by $~\langle \sigma v
 angle \sim rac{lpha}{M^2}$
- lacktriangleright "Standard" WIMPs have $~lpha \simeq lpha_{
 m EW}~~M \simeq M_{
 m EW}$
- ► Light dark matter: extends parameter space below the Lee-Weinberg bound

 Boehm, Fayet; Pospelov Ritz Voloshin; Feng, Kumar
- ▶ Light mediators are needed for a sizeable annihilation cross-section

Dark sectors

Minimal renormalizable portals to connect the dark sector with the SM

$$rac{\epsilon}{2}F'_{\mu
u}B_{\mu
u}$$
 Vector portal

$$H^\dagger H (\mu S + \lambda S^2)$$
 Scalar portal

$$yLHN$$
 Neutrino portal

Other options:

Gauge anomaly-free global symmetries (B-L, ...)

Higher dimensional operators portals (e.g. ALPs...)

More complex dark sectors, e.g. dark strongly interacting confining sectors

Could lead to unconventional cosmology, e.g. Hochberg, Kuflik, Murayama

Light dark sectors

► Light dark matter might be difficult to probe with conventional strategies. E.g. direct detection experiments loose sensitivity at low masses

▶ Many new ideas/concepts to explore sub-GeV DM

► Light DM good target for

high intensity fixed target accelerator experiments

Pros: large luminosities, large volume detectors,

good reconstruction capabilities

Long-lived particles

▶ Dark sectors often contain Long-Lived Particles (LLPs).

Example 1

<u>Mediators</u> can be long-lived when they can only decay into SM through suppressed interactions, e.g. dark photon, light scalar...

A dark photon produced at an energy E has a decay length:

$$L = \beta \gamma c \tau \simeq 100 \,\mathrm{m} \, \frac{10^{-5}}{\epsilon} \, \frac{E}{\mathrm{TeV}} \, \left(\frac{100 \mathrm{MeV}}{m_{A'}} \right)^2$$

Example 2

Heavy Neutral Leptons

$$yLHN$$
Neutrino portal

Long-lived particles

- **Example 3: Inelastic DM**
- ▶ Pair of dark states with a small mass splitting

- ► Coannihilation processes lead to thermal DM abundance
- ► Almost degenerate dark states -> evade strong bounds from CMB, indirect detection and direct detection
- ► Heaviest state can be a **LLP**

Long-lived particles

▶ Other examples motivated by the DM production

<u>Freeze-in</u> production of DM involves small couplings: long-lived particles are easily found in these scenarios

- Metastable particles already in the SM
- Surveys of models -theory motivations for LLPs

Feng et al. 2022 Snowmass Summer Study, 2203.05090

Curtin et al. Rept.Prog.Phys. 82 (2019) 11

Proposed LLPs experiments @ LHC

8

Forward detectors

FASER Feng et al. 2023

Feng et al. 2022 Snowmass Summer Study, 2203.05090

Detect LLPs produced in the forward region Backgrounds mitigated by rock + veto shielding

FASER*v*: emulsion detector for neutrino physics and DM scattering

Already installed. Plan for Forward Physics Facility with 5 detectors FASER 2, FASER v 2, FORMOSA, SND, FLAEE

FACET: forward detector close to CMS
Cerci et al. JHEP (2022) 06 110

MoEDAL - MAPP

Acharya et al. 2022 Snowmass Summer Study

Transverse detectors

Complementary to forward detectors

MATHUSLA

Alpigiani et al. 2009.01693

CODEX-b

Tracker + calorimeter near LHC-b

ANUBIS

Tracker detector in ATLAS access shaft

AL3X Gligorov et al. PRD 99 (2019) 1

Use ALICE cavern
Would imply ALICE is removed!

Inelastic DM

$$\mathcal{L}_{int} = \frac{\epsilon}{2\cos\theta_w} A'_{\mu\nu} B^{\mu\nu}.$$

- Production
- ▶ Drell-Yann processes: dominant production channels for masses > O(GeV)

- ► Meson decays and proton bremsstrahlung
- Detection

$$\Delta = \frac{m_2 - m_1}{m_1}$$

Sensitivities

Forecasting sensitivities

Searches at the main LHC detectors

Belle II sensitivity

The case of heavy mediators

ATLAS Coll.

"Dark matter summary plots for s-channel, 2HDM+a and Dark Higgs models",

https://cds.cern.ch/record/2816368/files/ATL-PHYS-PUB-2022-036.pdf

Complementarity with main LHC detectors

Bertuzzo, M.T. JHEP 03 (2021) 272

16

Secluded dark photon

Produced by decays of π , η , η' mesons: good target for forward detectors

Sterile Neutrinos

Heavy Neutral Leptons

Sterile neutrinos with masses of O(GeV) mixing with active neutrinos

$$\mathcal{L} = y_N L H N$$

Sterile Neutrinos

Heavy Neutral Leptons

Sterile neutrinos with masses of O(GeV) mixing with active neutrinos

Dark matter scattering

Scattering of light dark matter @ FASERv and FLArE

Batell, Feng, Ismail, Kling, Abraham PRD 104 (2021) 3

Light dark matter @ nu-experiments

MiniBooNE

- 8 GeV protons on iron target
- 800 ton mineral oil detector
- Dedicated DM run in beam dump mode
- Bounds on DM scattering on p/e MiniBooNE Coll PRD 98 (2018) 11

DUNE-PRISM

- Good prospects with the near detector
- Possibility to move it off-axis

De Romeri, Kelly, Machado PRD 100 (2019) 9 Breitbach et al. JHEP 01 (2022) 048

Conclusions

- ▶ Light dark matter and Long-lived particles are plausible and motivated scenarios
- ▶ Dedicated detectors at LHC and neutrino experiments can explore these scenarios

THANKS

Conclusions

