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Inflation and naturalness

Inflation was invented to explain the universe naturally —
prior to inflation, our universe a set of measure zero in GR

In turn:“cosmological” naturalness now becomes
naturalness of the EFT of inflation

In semiclassical gravity, easy-peasy: a derivatively coupled
inflaton with a flat potential, et voila

What about full-on QG? Current lore: no global
symmetries survive, and field range should be short

Moreover,

A possible answer: monodromy + rollercoaster inflation



Slow Roll Inflation
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Can we trust EFT arguments beyond Planck scale?

Guth, Linde, Albrecht & Steinhardt 80’s



Monodromy Inflation

Meaning: ‘running around singly” ///////

In other words: get large field excursion in (small) compact field
space, such that theory is under control

Simplest physical realization: a particle in a magnetic field
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Fitting theory and data
» Issues with first principles constructions and swampland conjectures’

» Backreaction of large field variations: when monodromy works, backreaction
flattens the potential — very helpful

- At the end, , and they are not kind... nor
cruel. They are indifferent!

0.25 1 Planck TT,TE,EE+lowE+lensing
X +BK18+BAO
BICEP/Keck: r < 0.036 0.20 - By
r=0.01415-010 N\
' 0.15 o
o , >
N C%C::
0.10 4 y
0.05 - - N
¢2/3
0.00 .

1 1 1 1
0.95 0.96 0.97 0.98 0.99 1.00
Ns



Rollercoaster cosmology

We relax both theoretical worries and data issues: we shorten the field
variation and we get redder spectrum, and smaller r

A key insight: observationally, we do not need 60 efolds in one go: we
only probe the first 10-15 (the one side of a black sheep!)

And then? Accelerated expansion may stop and go. This looks like a
tuning of a few parameters - not atypical for inflation

Bottomline: several stages of accelerated expansion just fine!

So far we are only probing the first (CMB) stage!
CMB constraints on models will be modified and interesting
predictions for short-scale experiments have to be figured out

A win-win: even if new predictions don’t pan out, we are testing
longevity of inflation



“The World Spectrum” of long smooth inflation
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“Bring me that horizon...”

A conformal time

PROBLEM

temperature ﬂuctuations
of the order 10~

BIG BANG today

RECOMBINATION SURFACE

causally disconnected patches

SOLUTION

RECOMBINATION SURFACE

BIG BANG one single causally
connected smooth patch



Rollercoaster (simplest) architecture
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(O Hyow ~ 2 Ly = a / ©

The Horizon Problem

—a(t)

1n

Normal matter

Inflation

11 Rollercoaster, H>H, start and end

HH, ~ H; of first interruption

This solves horizon problem in rollercoaster



The Curvature (and Homogeneity & Isotropy) Problem(s)
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The Curvature Problem
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Perturbations

Tensors are straightforward - there is metric and theory is
covariant

Scalar perturbations are a dynamical input since GR has no scalar
mode, we need to provide it.

It is the order parameter yielding accelerated expansion,
generically modeled as a scalar field to preserve covariance

Multiple stages, multiple fields.

Must have little hierarchies, clearly a tuning; yet this is no worse a
tuning than the standard selection of “right” parameters in any
inflation

What is needed is approximate scale invariance of the theory for long
enough, even piecemeal



Perturbations |

Prototype: Starobinsky - as done by Chibisov and Mukhanov
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» This is GR + matter in disguise! Any solution breaks conformal

symmetry spontaneously so there is a Goldstone scalar; CC is
an integration constant
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Mpy(eff)? = 48cH? A(eff) = 144cH*

* Fluctuating mode is buried in (or fed to) the curvature term
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Perturbations Il

The rest is just the standard approach to quantizing &
computing 2pt function
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Perturbations Il
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Cosmologia con quattro stagioni
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Cosmologia con quattro stagioni
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Power spectrum, more realistic case
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Power-law inflation, viable again!
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Doublecoaster cosmology

Iwo stages of monodromy inflation, separated by matter

domination when the first ends
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reduced field ranges
probably more generic
in UV setups



CMB predictions

- Solution is easy given the hierarchy: effective single-field with different pivot
scale

» First stage can last only 30-40 efolds. The rest of inflation is given by the
second stage.

» But... Bicep is pushing r down, what to do!?
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Monodromy at Strong Coupling

» Hard; but we can use EFT methods developed for heavy quarks

Specifically Naive Dimensional Analysis + gauge symmetries
Manohar, Georgi

* Monodromies naturally arise from massive 4-forms, which make gauge

symmetries manifest, which helps organize the EFT expansion
Julia & Toulouse; Aurilia & Nicolai & Townsend;Veneziano & de Vecchia; Quevedo & Truegenberger; Dvali;...

The massive 4-form have one propagating dof, a massive axion.
Dualize to this axial gauge and normalize operators using NDA.
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Doublecoaster + Higher Derivatives

In addition to potential flattening, strong coupling also induces higher-derivative
operators correcting kinetic terms
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Doublecoaster + Higher Derivatives

This means that the action is
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EFT of strongly coupled monodromy is a special case of k-inflation!

Armendariz-Picon, Damour, Mukhanov ‘99



Doublecoaster + Higher Derivatives

 Higher-derivative operators:
they give flattening (smaller r)
but generate non-Gaussianities

 Data: NG cannot be much larger than O(10)
* So coupling cannot be too strong

» Stronger coupling gives smaller tensor/scalar ratio

* So lower bound on r!
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When the “...bird” flies...

New BICEP/Keck

LiteBIRD Collaboration,
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Additional signatures

 More surprises, from string theory constructions it is
natural to expect couplings to gauge fields
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* In 4D, we study the coupling to a dark U(I)



The coupled axion-gauge field system

d1 +3Ho1 + 04, V(1) — fi¢<ﬁé> =0

AL(,k) + [k? £ 2)\¢kaH | AL (T, k) = 0 A=sgn(¢p) &= ?

— —(E? 4+ B? _ B=_VxA
PEB 2( + B°) E 1 3

Tachyonic dependence of one helicity for fast field

Campbell, Kaloper, Madden, Olive 1995
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many others



Solutions...

Full solution is complicated.

For constant &, we have exponential production
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Solutions...

Exponentials are never physical all the way: energy
conservation gives saturation.

We can trust the solutions up to “end of inflation”, where

we switch regimes and match to numerical solutions
Domcke, Guidetti, Welling, Westphal 2020

Observables? At small scales large, non-Gaussian scalar
perturbations and gravitational waves!

Gravitational waves are chiral, and they are
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Small-scale predictions
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A very loud signal for LISA/BBO



Small-scale predictions
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Varying Ncwms, signal in the range of different instruments (NANOgrav,
SKA, LISA, Decigo, Big Bang Observatory, Einstein Telescope...)
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Conclusions

* Why does inflation have to happen all in one go? It does not!

Interrupting may help with naturalness
It definitely helps with fitting data for large-field models

Horizon and curvature problems are easily solved

Model building reopens

Interruptions give correlated signals at large and small scales
what are other interesting observables?

* One simple, realistic example:

Double monodromy inflation, a gravity waves factory for CMB
and small-scale GW experiments

- What else?






