neutrinos and gamma rays from clusters of galaxies

In collaboration with

Elisabete de Gouveia Dal Pino Klaus Dolag Saqib Hussain

CRPropa Workshop on Astroparticle Propagation Madrid, Spain 15 September, 2022

Rafael Alves Batista

Instituto de Física Teórica (IFT UAM-CSIC) Universidad Autónoma de Madrid

<u>rafael.alvesbatista@uam.es</u>

www.8rafael.com

what is the origin of high-energy emission by galaxy clusters?

talk outline

what is the origin of high-energy emission by galaxy clusters?

talk outline

what is the origin of high-energy emission > GeV-TeV gamma rays by galaxy clusters?

talk outline

> TeV-PeV neutrinos

what is the origin of high-energy emission > GeV-TeV gamma rays by galaxy clusters?

electrons

talk outline

> TeV-PeV neutrinos

what is the origin of high-energy emission > GeV-TeV gamma rays by galaxy clusters? > TeV-PeV neutrinos

electrons

Rafael Alves Batista | CRPropa Workshop | September 15, 2022 | Neutrinos and gamma rays from galaxy clusters

talk outline

cosmic rays

what is the origin of high-energy emission > GeV-TeV gamma rays by galaxy clusters? > TeV-PeV neutrinos

electrons

Rafael Alves Batista | CRPropa Workshop | September 15, 2022 | Neutrinos and gamma rays from galaxy clusters

talk outline

cosmic rays

high-energy multimessenger landscape

high-energy multimessenger landscape

high-energy multimessenger landscape

high-energy multimessenger landscape

high-energy multimessenger landscape

hadrons & nuclei

electrons

photons

neutrinos

particle acceleration

photons

neutrinos

photopion production

- $p + \gamma_{bq} \rightarrow n + \pi^+$ (similar for nuclei)

Bethe-Heitler pair production

nucleus(A, Z) + $\gamma_{bg} \rightarrow$ nucleus(A, Z) + e^- + e^+

photodisintegration

nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A-1, Z) + **n** nucleus(A, Z) + $\gamma_{bg} \rightarrow$ nucleus(A-1, Z-1) + p nucleus(A, Z) + $\gamma_{bq} \rightarrow \dots$

- nucleus(A,Z) \rightarrow nucleus(A-4,Z-2) + α
- nucleus(A, Z) \rightarrow nucleus(A, Z+1) + e^- + \underline{v}_e
- nucleus(A, Z) \rightarrow nucleus(A, Z-1) + e^{-+} + v_e
- nucleus(A, Z)* \rightarrow nucleus(A, Z) + γ

nucleus-nucleus interactions

 $p + p \rightarrow \dots + \pi^0 + \pi^- + \pi^+$

photopion production

- (similar for nuclei)

Bethe-Heitler pair production

nucleus(A, Z) + $\gamma_{bg} \rightarrow$ nucleus(A, Z) + e^- + e^+

photodisintegration

- nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A-1, Z) + **n**
- nucleus(A,Z) + $\gamma_{bg} \rightarrow$ nucleus(A-1,Z-1) + p
- nucleus(A, Z) + $\gamma_{bq} \rightarrow \dots$

- nucleus(A,Z) \rightarrow nucleus(A-4,Z-2) + α
- nucleus(A, Z) \rightarrow nucleus(A, Z+1) + e^- + v_e
- nucleus(A, Z) \rightarrow nucleus(A, Z-1) + e^{-+} + v_e
- nucleus(A, Z)* \rightarrow nucleus(A, Z) + γ

nucleus-nucleus interactions

 $p + p \rightarrow \dots + \pi^0 + \pi^- + \pi^+$

photopion production

(similar for nuclei)

Bethe-Heitler pair production

nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A, Z) + e^- + e^+

photodisintegration

nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A-1, Z) + **n**

- nucleus(A,Z) + $\gamma_{bg} \rightarrow$ nucleus(A-1,Z-1) + p
- nucleus(A, Z) + $\gamma_{bg} \rightarrow \dots$

nucleus(A,Z) \rightarrow nucleus(A-4,Z-2) + α

- nucleus(A,Z) \rightarrow nucleus(A,Z+1) + e^- + \underline{v}_e
- nucleus(A, Z) \rightarrow nucleus(A, Z-1) + e^{-+} + v_e
- nucleus(A, Z)* \rightarrow nucleus(A, Z) + γ

nucleus-nucleus interactions

 $p + p \rightarrow \dots + \pi^0 + \pi^- + \pi^+$

decays

. . .

$$\pi^{0} \rightarrow \mathbf{v} + \mathbf{v}$$

$$\pi^{+} \rightarrow \mathbf{v}_{\mu} + \mu^{+}$$

$$\pi^{-} \rightarrow \mathbf{v}_{\mu} + \mu^{-}$$

$$\mu^{+} \rightarrow \mathbf{e}^{+} + \mathbf{v}_{\mathbf{e}} + \mathbf{v}_{\mu}$$

$$\mu^{-} \rightarrow \mathbf{e}^{-} + \mathbf{v}_{\mathbf{e}} + \mathbf{v}_{\mu}$$

$$\eta \rightarrow \mathbf{p} + \mathbf{e}^{-} + \mathbf{v}_{\mathbf{e}}$$

pair production $\gamma + \gamma_{bq} \rightarrow e^- + e^+$ double pair production $\gamma + \gamma_{bq} \rightarrow e^- + e^+ + e^- + e^+$ inverse Compton scattering $e^{\pm} + \gamma_{bq} \rightarrow e^{\pm} + \gamma$ triplet pair production

 $e^{\pm} + \gamma_{bq} \rightarrow e^{\pm} + e^{-} + e^{+}$

photopion production

(similar for nuclei)

Bethe-Heitler pair production

nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A, Z) + e⁻ + e⁺

photodisintegration

nucleus(A, Z) + $\gamma_{bq} \rightarrow$ nucleus(A-1, Z) + **n** nucleus(A, Z) + $\gamma_{bg} \rightarrow$ nucleus(A-1, Z-1) + p nucleus(A, Z) + $\gamma_{bq} \rightarrow \dots$

nucleus(A,Z) \rightarrow nucleus(A-4,Z-2) + α nucleus(A, Z) \rightarrow nucleus(A, Z+1) + e⁻ + V_e nucleus(A, Z) \rightarrow nucleus(A, Z-1) + e⁻⁺ + V_e nucleus(A, Z)* \rightarrow nucleus(A, Z) + γ

nucleus-nucleus interactions

 $p + p \rightarrow \dots + \pi^0 + \pi^- + \pi^+$

decays

. . .

$$\pi^{0} \rightarrow \mathbf{Y} + \mathbf{Y}$$

$$\pi^{+} \rightarrow \mathbf{V}_{\mu} + \mu^{+}$$

$$\pi^{-} \rightarrow \mathbf{V}_{\mu} + \mu^{-}$$

$$\mu^{+} \rightarrow \mathbf{e}^{+} + \mathbf{V}_{\mathbf{e}} + \mathbf{V}_{\mu}$$

$$\mu^{-} \rightarrow \mathbf{e}^{-} + \mathbf{V}_{\mathbf{e}} + \mathbf{V}_{\mu}$$

$$n \rightarrow p + \mathbf{e}^{-} + \mathbf{V}_{\mathbf{e}}$$

pair production $\gamma + \gamma_{bq} \rightarrow e^- + e^+$ double pair production $\gamma + \gamma_{bq} \rightarrow e^- + e^+ + e^- + e^+$ inverse Compton scattering $e^{\pm} + \gamma_{bq} \rightarrow e^{\pm} + \gamma$ triplet pair production

 $e^{\pm} + \gamma_{bq} \rightarrow e^{\pm} + e^{-} + e^{+}$

propagation of CRs in the intracluster medium

propagation of CRs in the intracluster medium

Alves Batista, de Gouveia Dal Pino, Dolag, Hussain. Proceedings IAU 2018 FM8. arXiv:1811.03062

propagation of CRs in the intracluster medium

Alves Batista, de Gouveia Dal Pino, Dolag, Hussain. Proceedings IAU 2018 FM8. arXiv:1811.03062

cosmological MHD simulations

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702 Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260

cosmological MHD simulations

statistical properties of the galaxy clusters

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702 Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260

statistical properties of the galaxy clusters

the photon field in clusters

neutrinos from individual clusters

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702

neutrinos from individual clusters

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702 Fang and Olinto. Astrophys. J. 828 (2016) 37. arXiv:1607.00380 Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

Hussain et al. 2021

embedded source interactions: $pp + p\gamma + EM$ $\alpha = [1.5, 2.7]$ $E_{max} = [5, 500] PeV$ source evolution = AGN, SFR, none $L_{CR} = [0.005, 0.05] L_{tot}$

Fang and Olinto 2016

embedded source + accretion shocks interactions: pp $\alpha = [1.5, 2.0]$ $E_{max} = 50 \text{ PeV}$ $L_{CR} = [0.005, 0.02] L_{tot}$

Zandanel et al. 2015

accretion shocks interactions: pp $\alpha = [1.5, 2.4]$ $B = 0.5 \ \mu G, 1.0 \ \mu G, >> B_{CMB}$ $L_{CR} = [0.02 \ L_{tot}]$

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702 Fang and Olinto. Astrophys. J. 828 (2016) 37. arXiv:1607.00380 Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

clusters could account for up to 100% of the neutrino flux (depending on the choice of parameters)

Hussain et al. 2021

embedded source interactions: $pp + p\gamma + EM$ $\alpha = [1.5, 2.7]$ $E_{max} = [5, 500] PeV$ source evolution = AGN, SFR, none $L_{CR} = [0.005, 0.05] L_{tot}$

Fang and Olinto 2016

embedded source + accretion shocks interactions: pp $\alpha = [1.5, 2.0]$ $E_{max} = 50 \text{ PeV}$ $L_{CR} = [0.005, 0.02] L_{tot}$

Zandanel et al. 2015

accretion shocks interactions: pp $\alpha = [1.5, 2.4]$ $B = 0.5 \ \mu G, 1.0 \ \mu G, >> B_{CMB}$ $L_{CR} = [0.02 \ L_{tot}]$

gamma rays from individual clusters

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260

gamma rays from individual clusters

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260 Nishiwaki, Sano, Murase. Astrophys. J. 992 (2021) 190. Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260 Nishiwaki, Sano, Murase. Astrophys. J. 992 (2021) 190. Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

flux (depending on the choice of parameters)

Hussain et al. 2021

embedded source interactions: $pp + p\gamma + EM$ $\alpha = [1.5, 2.7]$ $E_{max} = [5, 500] PeV$ source evolution = AGN, SFR, none $L_{CR} = [0.005, 0.05] L_{tot}$

Zandanel et al. 2015

accretion shocks interactions: pp $\alpha = [1.5, 2.4]$ $B = 0.5 \ \mu G, 1.0 \ \mu G, >> B_{CMB}$ $L_{CR} = 0.02 L_{tot}$ no intergalactic propagation

Nishiwaki et al. 2021

accretion shocks (w/ re-acceleration) interactions: pp + EM $\alpha = [2.00, 2.45]$ f_{pe} = [0.00, 0.01] (primary electrons)

"hard-sphere" acceleration

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260 Nishiwaki, Sano, Murase. Astrophys. J. 992 (2021) 190. Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

clusters could account for up to 100% of the gamma-ray flux (depending on the choice of parameters)

Hussain et al. 2021

embedded source interactions: $pp + p\gamma + EM$ $\alpha = [1.5, 2.7]$ $E_{max} = [5, 500] PeV$ source evolution = AGN, SFR, none $L_{CR} = [0.005, 0.05] L_{tot}$

Zandanel et al. 2015

accretion shocks interactions: pp $\alpha = [1.5, 2.4]$ $B = 0.5 \ \mu G, 1.0 \ \mu G, >> B_{CMB}$ $L_{CR} = 0.02 L_{tot}$ no intergalactic propagation

Nishiwaki et al. 2021

accretion shocks (w/ re-acceleration) interactions: pp + EM $\alpha = [2.00, 2.45]$ f_{pe} = [0.00, 0.01] (primary electrons)

"hard-sphere" acceleration

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. arXiv:2203.01260 Nishiwaki, Sano, Murase. Astrophys. J. 992 (2021) 190. Zandanel, Tamborra, Gabici, Ando. Astron. Astrophys. 578 (2015) A32. arXiv:1410.8697

flux (depending on the choice of parameters)

Hussain et al. 2021

embedded source interactions: $pp + p\gamma + EM$ $\alpha = [1.5, 2.7]$ $E_{max} = [5, 500] PeV$ source evolution = AGN, SFR, none $L_{CR} = [0.005, 0.05] L_{tot}$

Zandanel et al. 2015

accretion shocks interactions: pp $\alpha = [1.5, 2.4]$ $B = 0.5 \ \mu G, 1.0 \ \mu G, >> B_{CMB}$ $L_{CR} = 0.02 L_{tot}$ no intergalactic propagation

Nishiwaki et al. 2021

accretion shocks (w/ re-acceleration) interactions: pp + EM $\alpha = [2.00, 2.45]$ f_{pe} = [0.00, 0.01] (primary electrons) "hard-sphere" acceleration

neutrinos and gamma rays from galaxy clusters: summary

neutrinos and gamma rays from galaxy clusters: summary

contribution from clusters of galaxies to the DGRB and $D\nu B$ remain uncertain but may be sizeable

neutrinos and gamma rays from galaxy clusters: summary

contribution from clusters of galaxies to the DGRB and $D\nu B$ remain uncertain but may be sizeable

acknowledgements

