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CR Acceleration 
Brief Overview

• Cosmic ray particles scatter with magnetic field 
turbulences


• In the reference frame of the scatter center, the 
magnetic field reflects them, without 
accelerating


• Assuming that the scatter centers are moving 
as well, particles on average are accelerated in 
the galactic reference frame



Moving Clouds Scenario
  Second Order Fermi Acceleration

• Particles enter moving magnetized clouds, 
elastic scattering, leave in random direction


• “Head-on” and “tail-on” collisions, depending 
on relative velocity, head-on are more likely than 
tail-on


• Lorentz transformations from galactic -> cloud 
-> galactic frame and averaging over scattering 
angles yields average energy gain:



Diffusive Shock Acceleration
  First Order Fermi Acceleration

• Particles cross shock front repeatedly


• “Head-on” collisions only, with 
seen from upstream or downstream frame of 
reference


• Lorentz transformations from upstream -> 
downstream -> upstream frame and averaging 
over scattering angles yields average energy 
gain:

vsc = vup − vdown
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Stochastic Differential Equations
   First & Second Order Fermi Acceleration
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… implemented in CRPropa so far





Continuous velocity profile for SDE approach

• Influence of shock wave given by 
change in streaming velocity with 
energy gain proportional to 
velocity gradient 


• For SDE approach: no 
discontinuity, “smooth” transition 
instead:

Diffusive Shock Acceleration 



-

Shock width, step length and spectrum



• Advective step must be smaller than 
the shock width, otherwise pseudo-
particles only by chance meet the area 
where velocity changes 


• But: Small advective steps (n > 0) don’t 
“see” a discrete shock but a smooth 
velocity gradient


• For ideal shock solution: very small 
shock width and thus very high 
resolution in advective step need to be 
simulated

Shock width, step  
length and spectrum

Adapted from Krülls&Achterberg, 1993



Shock width and step length

 Krülls&Achterberg, 1993



Time Evolution of Resulting Spectrum



Reference Solution with varying Diff. Coeff.
• For analytic solution by Toptyghin diffusion coefficient 

changes over shock:


• A spatial varying Diffusion Coefficient also adds to 
advective step: 


• CRPropa Module specifying Diffusion Coefficient and its 
derivative, analogous to AdvectionField Module


• For simulation of an ideal shock:

 Time development of number density at the shock. U = y^2 F. 
T = 0.64, 2.0, 6.4 and infinity. Solid lines represent analytical 

results of Toptyghin, 1980. Krülls&Achterberg, 1993



Time Evolution of Resulting Spectrum



Time Evolution of Resulting Spectrum



Conclusion

• Diffusive Shock Acceleration can be modelled with CRPropas DiffusionSDE 
module when shock profile is approximated by continuous advection field


• Resulting spectral index highly depends on the choice of advective step, 
shock width and diffusive step


• Model acceleration at shocks with finite width


• For ideal shocks, small shock widths and therefore advective step is 
necessary to produce the correct spectral index


• Any other possibilities to take ideal shocks into account?



•



Time scaling instead of jump conditions

• Velocity and diffusion coefficient defined by continuous functions and jump 
conditions at the shock:


• Resulting SDEs:



• Time scaling to eliminate delta-functions:


• Resulting SDE can be solved by the Euler scheme:


• Energy gain depends on the jump conditions and whether the trajectory passes 
the shock:

Time scaling instead of jump conditions



Conclusion II

• Diffusive Shock Acceleration can be modelled in CRPropa by


• Approximating velocity profile of the shock (for finite shock widths)


• Scaling when candidates cross shock front (for ideal shocks)


• Spatial varying Diffusion Coefficient


• Momentum Diffusion for Second Order Fermi Acceleration
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Thank you for your attention!


