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CR Acceleration

Brief Overview &—

* Cosmic ray particles scatter with magnetic field
turbulences

* |In the reference frame of the scatter center, the

magnetic field reflects them, without

accelerating cachee %ume,

* Assuming that the scatter centers are moving
as well, particles on average are accelerated in
the galactic reference frame




Moving Clouds Scenario

Second Order Fermi Acceleration

* Particles enter moving magnetized clouds,
elastic scattering, leave in random direction

 “Head-on” and “tail-on” collisions, depending
on relative velocity, head-on are more likely than
tail-on

* Lorentz transformations from galactic -> cloud
-> galactic frame and averaging over scattering
angles yields average energy gain:
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Diffusive Shock Acceleration

First Order Fermi Acceleration

* Particles cross shock front repeatedly

» "Head-on” callisions only, with vi. = v, = Vgoun

seen from upstream or downstream frame of
reference

* |orentz transformations from upstream ->
downstream -> upstream frame and averaging
over scattering angles yields average energy
gain;




Diffusive Shock Acceleration

First Order Fermi Acceleration

* Particles cross shock front repeatedly

 "Head-on” collisions only, with v_sc = v_up-
v_down seen from upstream or downstream
frame of reference

e |orentz transformations from upstream ->
downstream -> upstream frame and averaging
over scattering angles yields average energy
gain;:
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Diffusive Shock Acceleration

First Order Fermi Acceleration

* Particles cross shock front repeatedly

 "Head-on” collisions only, with v_sc = v_up-
v_down seen from upstream or downstream
frame of reference

e |orentz transformations from upstream ->
downstream -> upstream frame and averaging
over scattering angles yields average energy
gain;:
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Stochastic Differential Equations

First & Second Order Fermi Acceleration

0
dx(f) = \/2xdW. + (—K + V) d

ox

oD 10V
dp(r) = \/2DdW, + (— — ——p) dt



Stochastic Differential Equations

First & Second Order Fermi Acceleration

0
dx(r) = /2cdW, + (a—K+
X
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Stochastic Differential Equations

First & Second Order Fermi Acceleration

0
dx(7) = \/2xdW. + (—K+

Spatial Diffusion Coetficient
dr
0X

( oD 10 ) q Momentum Diffusion Coefficient
[



Stochastic Differential Equations

First & Second Order Fermi Acceleration

Spatial Diffusion
dx(?) =/ 2xdW, + dz
dp(7) = Lo dz
= 3 dxp

... Implemented in CRPropa so far
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Diffusive Shock Acceleration

Continuous velocity profile for SDE approach

e |Influence of shock wave given by 1D Advection Field, Shock at x = 0, compression = 4
change in streaming velocity with e w — x_sh = 0.50 au
energy gain proportional to 0.09 - e
velocity gradient 0.08 - )

0.07 -

 For SDE approach: no o
discontinuity, “smooth” transition il
iInstead: 0.05 -

| | .. 0.04 -
B(x) = a — btanh(zx/Xg) , 003 -

-1.0 -0.5 0.0 0.5 10
x/au



Shock width, step length and spectrum
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Shock width, step
length and spectrum

* Advective step must be smaller than

the shock width, otherwise pseudo-
particles only by chance meet the area

where velocity changes
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 But: Small advective steps (nh > 0) don’t
“see” a discrete shock but a smooth

velocity gradient

* For ideal shock solution: very small

shock width and thus very high
resolution in advective step need to be

simulated
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Adapted from Krllls&Achterberg, 1993



Krulls&Achterberg, 1993

s = power-law index of |

Shock width and step length

)L: Cb‘ﬂé A?ﬂdh& = Eﬂt C< (AK@&\,
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step = 0.004
step = 0.008
step = 0.016
step = 0.032
step = 0.064
step = 0.128
step = 0.256
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0 1 2 3
n = log2(x_sh/dx_adv)
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J*E 0.00

Time Evolution of Resulting Spectrum
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* For analytic solution by Toptyghin diffusion coefficient
changes over shock:

e A spatial varying Diffusion Coefficient also adds to
advective step:
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* CRPropa Module specifying Diffusion Coefficient and its
derivative, analogous to AdvectionField Module

 For simulation of an ideal shock:
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Reference Solution with varying Diff. Coeff.
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Time development of number density at the shock. U = y?A2 F.

T =0.64, 2.0, 6.4 and infinity. Solid lines represent analytical
results of Toptyghin, 1980. Krulls&Achterberg, 1993



J*E 0.00

Time Evolution of Resulting Spectrum
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J*E 0.00

Time Evolution of Resulting Spectrum
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Conclusion

* Diffusive Shock Acceleration can be modelled with CRPropas DiffusionSDE
module when shock profile is approximated by continuous advection field

* Resulting spectral index highly depends on the choice of advective step,
shock width and diffusive step

e Model acceleration at shocks with finite width

* For ideal shocks, small shock widths and therefore advective step is
necessary to produce the correct spectral index

* Any other possibilities to take ideal shocks into account?
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Time scaling instead of jump conditions

* \elocity and diffusion coefficient defined by continuous functions and jump
conditions at the shock:

V = V.(x) + 5AV(0) sign (x),

k = k(x) + 7Ak(0) sign (x),
* Resulting SDEs:

dx(t) = /2K dW,(t) + Ax(0)5(x)dt + [a';“ix) | V]dt ,

dp(t) = /2D dW(t) ; AV (0)p 8(x)dt + {ZI; % [ag;(cx)]p _ k}dt .



Time scaling instead of jump conditions

* Time scaling to eliminate delta-functions:

o, x <0,
y = s(x)x with s(x)=13, x=0,
(1—a), x>0.

* Resulting SDE can be solved by the Euler scheme:

dy(t) = s(y){\/idwx(t) + [a;;;(cx) | V]dt}.

 Energy gain depends on the jump conditions and whether the trajectory passes

the shock: |

3AK(0)

dp(t) = /2D dW(t) AV(O)p[dx — s~ 1(y)dy)] + (aD k)dt .

op



Conclusion Il

» Diffusive Shock Acceleration can be modelled in CRPropa by
* Approximating velocity profile of the shock (for finite shock widths)
» Scaling when candidates cross shock front (for ideal shocks)

o Spatial varying Diffusion Coefficient

e Momentum Diffusion for Second Order Fermi Acceleration
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Thank you for your attention!



