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IGMF - Origin

The origin of IGMF is still uncertain – mainly two different
concepts:

I Astrophysical scenario: Seed magnetic fields are generated
during structure formation (e.g. by a Biermann Battery
[Biermann, 1950]) and are then amplified by the dynamo
effect [Zeldovich et al., 1980]

I Cosmological scenario: Strong seed magnetic fields are
generated in the Early Universe, e.g. at a phase transition
(QCD, electroweak) [Sigl et al., 1997] or during inflation
[Turner and Widrow, 1988], and some of the initial energy
content is transfered to larger scales.

The latter are the so-called Primordial Magnetic Fields and will be
(mostly) focused on in the following.
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IGMF - Standard Constraints [Alves Batista and Saveliev, 2021]
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Resistive decay removes short correlation lengths
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IGMF cannot be stronger than galactic magnetic fields
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IGMF Limits from CMB

There are several previous limits on IGMF from CMB
[Jedamzik and Saveliev, 2019]:

Principal Effect Upper Limit
spectral distortions 30− 40 nG

anisotropic expansion 3.4 nG
CMB temp. anisotropies:
– due to magnetic modes 1.2− 6.4 nG
– due to plasma heating 0.63− 3 nG

CMB polarization 1.2 nG
non-Gaussianity bispectrum 2− 9 nG
non-Gaussianity trispectrum 0.7 nG
non-Gaussianity trispectrum

with inflationary curvature mode 0.05nG
reionization 0.36 nG



IGMF - Standard Constraints [Alves Batista and Saveliev, 2021]
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IGMF – Lower Bound on B? [Alves Batista and Saveliev, 2021]
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IGMF – Lower Bound on B?
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Gamma rays emitted from a blazar develop an electromagnetic
cascade due to interactions with the Extragalactic Background
Light (EBL) via Pair Production and Inverse Compton (IC)
scattering. The interaction of this cascade with the IGMF results
in several observational features.



IGMF – Lower Bound on B?
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Point-like sources appear extensive [Dolag et al., 2009],
[Neronov et al., 2010]
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I Point-like sources appear
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[Neronov et al., 2010]
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Time-delayed echos of primary gamma rays [Plaga, 1994],
[Murase et al., 2008]
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Limits on IGMF using Multimessengers
I Multimessenger physics opens a new window of opportunity

for constraining IGMF

I A flaring object (flare duration ∆tflare) which emits gamma
rays and neutrinos simultaniously provides a measure for the
time delay ∆tIGMF of the sec. gamma rays due to IGMF

I Of particular interest is the IceCube neutrino event
IC-170922A [IceCube Collaboration, 2018] which is associated
with the 2017 flare of the blazar TXS 0506+056 in the
electromagn. spectrum [IceCube Collaboration et al., 2018]
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Limits on IGMF using Multimessengers

I We simulate the emitted flux as

dN
dE = J0

E−αl exp
(
− E

Emax,l

)
"low" (non-flaring) state ,

ηE−αh exp
(
− E

Emax,h

)
"high" (flaring) state ,

where η is the enhancement factor during the flare

I We use four different EBL models for the simulation of the
propagation of the electromagnetic cascade with the CRPropa
code [Alves Batista et al., 2016a] and consider large ranges of
B, Lc, Emax and α

I In order to analyze the data, we first determine the best-fit
spectral parameters of the low state (i.e. Emax,l and αl), and
then scan over the remaining parameters (η, Emax,h, αh, B,
Lc)
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I For two of the EBL models we could reject the B = 0
hypothesis

I For these two models it is possible to constrain the magnetic
field strength B and the correlation length Lc
[Alves Batista and Saveliev, 2020]
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EBL: Doḿınguez et al. 2011; ∆tAGN = 104 yr

0.00

0.05

0.10

0.15

0.20

0.25

pr
o

ba
bi

lit
y

I For two of the EBL models we could reject the B = 0
hypothesis

I For these two models it is possible to constrain the magnetic
field strength B and the correlation length Lc
[Alves Batista and Saveliev, 2020]



Limits on IGMF using Multimessengers
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I IGMF have a significant impact on the determination of the
intrinsic spectral properties of the source
[Saveliev and Alves Batista, 2021]
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Suppression of observed photon flux in the GeV region
[d’Avezac et al., 2007], [Neronov and Vovk, 2010],
[Vovk et al., 2012]



IGMF – Lower Bound on B?

Predicted gamma ray flux of
1ES0229+200 for different magnetic
fields with data points of Fermi LAT
and HESS [Saveliev et al., 2013a]

I Point-like sources appear
extensive
[Dolag et al., 2009],
[Neronov et al., 2010]

I Time-delayed echos of
primary gamma rays
[Plaga, 1994],
[Murase et al., 2008]

I Suppression of observed
photon flux in the GeV
region
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10−4 10−2 100 102 104

LB [Mpc]

10−21

10−19

10−17

10−15

10−13

10−11

10−9
B

[G
]

Essey et al. 2010

Alves Batista & Saveliev 2020 (D11)

Alves Batista & Saveliev 2020 (S16l)

Neronov & Vovk 2010

Dermer et al. 2011

Finke et al. 2015

Tiede et al. 2020

Fermi-LAT 2018 (10 yr)

Fermi-LAT 2018 (104 yr)

Fermi-LAT 2018 (107 yr, cons.)

Fermi-LAT 2018 (107 yr)

VERITAS 2017

H.E.S.S. 2014



Relativistic Pair Beams and Plasma Instabilities

However, these results have been criticized: Two-stream-like
instabilities might arise [Broderick et al., 2012],
[Schlickeiser et al., 2012]
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Relativistic Pair Beams and Plasma Instabilities

The energy loss time due to these instabilities can be smaller than
the mean free path of Inverse Compton Scattering
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Relativistic Pair Beams and Plasma Instabilities

I Therefore the electromagnetic cascade rapidly loses energy
which is a possible reason for the GeV flux suppression as
shown by actual MC simulations
[Alves Batista et al., 2019b]
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I In the future this might be used to distinguish between the
two scenarios for different sources

I However, there is an ongoing debate whether the assumptions
are justified (e.g. inhomogeneities)
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Magnetic Helicity

I The magnetic helicity H is defined as H =
∫

V A ·B dV, where
A is the vector potential

I Next to B and LB it is an important quantity to characterize a
magnetic field as it describes its topology

I It is connected to the linkage numbers of magnetic field lines
(infinitisemal magnetic flux tubes)
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I Important since it is a conserved quantity and hence
influences the time evolution of IGMF [Saveliev et al., 2013b]



Measurement of Primordial Magnetic Helicity
It has been shown that [Tashiro and Vachaspati, 2013]

G(E1,E2) =
〈

(Θ1 ×Θ2) · x
|x|

〉
∝ 1

2H(r12)r12

for a known blazar position; otherwise (with E3 > E2 > E1)

G(E1,E2,E3) =
〈

[(Θ1 −Θ3)× (Θ2 −Θ3)] · x3
|x3|

〉
∝ 1

2H(r12)r12
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Helicity Analysis – Sky Maps [Alves Batista et al., 2016b]

Sky maps for maximally negative
(top left) and positive helicity
(bottom left) and zero helicity
(top), B = 10−15 G,
LB ' 120Mpc.



Helicity Analysis – Sky Maps [Alves Batista et al., 2016b]

Sky maps for positive helicity with
LB = 50Mpc (top left), LB = 150Mpc
(bottom left) and LB = 250Mpc
(right). The influence of helicity can be
seen better with increasing correlation
length LB of the magnetic field.



IGMF and UHECR

I In a magnetic field UHECR
travel on curved trajectories

I Possibility for UHECR
astronomy?
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Contradicting answers in early works:

I NO: Deflections are too large – 20 degrees up to 1020 eV
[Sigl et al., 2004]

I YES: No significant deflections due to IGMF in most of the
sky – strong deflections only occurring when crossing galaxy
clusters and, less pronounced, filaments [Dolag et al., 2005]

I Conflict due to large uncertainties present when modeling
IGMF



IGMF and UHECR

I In a magnetic field UHECR
travel on curved trajectories

I Possibility for UHECR
astronomy?

O

��
��
��
��

�
�
�
�

A
B

���
���
���

���
���
���

Contradicting answers in early works:

I NO: Deflections are too large – 20 degrees up to 1020 eV
[Sigl et al., 2004]

I YES: No significant deflections due to IGMF in most of the
sky – strong deflections only occurring when crossing galaxy
clusters and, less pronounced, filaments [Dolag et al., 2005]

I Conflict due to large uncertainties present when modeling
IGMF



IGMF and UHECR

I In a magnetic field UHECR
travel on curved trajectories

I Possibility for UHECR
astronomy?

O

��
��
��
��

�
�
�
�

A
B

���
���
���

���
���
���

Contradicting answers in early works:
I NO: Deflections are too large – 20 degrees up to 1020 eV

[Sigl et al., 2004]

I YES: No significant deflections due to IGMF in most of the
sky – strong deflections only occurring when crossing galaxy
clusters and, less pronounced, filaments [Dolag et al., 2005]

I Conflict due to large uncertainties present when modeling
IGMF



IGMF and UHECR

I In a magnetic field UHECR
travel on curved trajectories

I Possibility for UHECR
astronomy?

O

��
��
��
��

�
�
�
�

A
B

���
���
���

���
���
���

Contradicting answers in early works:
I NO: Deflections are too large – 20 degrees up to 1020 eV

[Sigl et al., 2004]
I YES: No significant deflections due to IGMF in most of the

sky – strong deflections only occurring when crossing galaxy
clusters and, less pronounced, filaments [Dolag et al., 2005]

I Conflict due to large uncertainties present when modeling
IGMF



IGMF and UHECR

I In a magnetic field UHECR
travel on curved trajectories

I Possibility for UHECR
astronomy?

O

��
��
��
��

�
�
�
�

A
B

���
���
���

���
���
���

Contradicting answers in early works:
I NO: Deflections are too large – 20 degrees up to 1020 eV

[Sigl et al., 2004]
I YES: No significant deflections due to IGMF in most of the

sky – strong deflections only occurring when crossing galaxy
clusters and, less pronounced, filaments [Dolag et al., 2005]

I Conflict due to large uncertainties present when modeling
IGMF



IGMF and UHECR
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Measurement of IGMF Helicity Using UHECR

Calculation of correlation between source positions
[Kahniashvili and Vachaspati, 2006]
I For example: Take N pairs (indexed with α) of sources with

each having the same separation vector ∆ = XB − XA

I P = 1
N
∑N

α=1 PA
αPB

α gives a measure of the corresponding
correlator

I Helical part may be isolated from the expression
Alternatively: Simulation of isotropically distributed UHECR
sources in a helical magnetic field
[Alves Batista and Saveliev, 2019]
I We are using a simple model with a single magnetic field mode
I As the energy loss also depends on the traveled distance,

conclusions about the IGMF structure may be made
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Conclusions and Outlook

I Actual 3D simulations of gamma-ray propagation have shown
that, apart from the field strength, also a statement
considering the IGMF correlation length and helicity may be
made

I Another possibility is to use UHECR, which, however, is more
challenging

I In the future: Extension to more realistic scenarios and
combination of the methods, e.g. by using secondaries of
UHECR, more realistic magnetic field configurations and
plasma instability models, determination of the spectral index
of the IGMF distribution, ...
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