High-energy particles from astrophysical transients

Claire Guépin

Enrico Fermi Fellow, University of Chicago <u>claire.guepin@lupm.in2p3.fr</u>, <u>cguepin@uchicago.edu</u>

CRPropa Workshop on Astroparticle Propagation

• Multi-wavelength (MWL) and multi-messenger (MM) astronomy: photons, cosmic rays,

neutrinos, gravitational waves

\bullet HE - UHE neutrinos (HE $\gtrsim 10^{15}\,eV$ and UHE $\gtrsim 10^{17}\,eV$)

- Undeflected signatures of hadronic interactions: sites of cosmic-ray acceleration
 - \rightarrow Identification of HE UHE cosmic-ray sources?
- Rare interactions, no deflections during propagation: deeper cosmological horizon than cosmic rays and gamma rays, good potential for spatial + temporal coincidences
 - → Identification of neutrino sources? Advent of HE UHE neutrino astronomy!
- Exciting prospects with **future detectors**: many emerging projects

Part of table from: Guépin, Kotera & Oikonomou, Nature Rev. Phys., arXiv 2207.12205

20	21 2025	>2030	Peak energy	202	1 2025	>2030	Peak energy	202	21 2	2025	>2030	Peak energy
	ANTARES	up(cascade)	50(100) TeV		Auger		0.3-1 EeV		ANITA			$100 \mathrm{EeV}$
	IceCube	up(cascade)	$100 { m TeV}$		POEM	MA Cerenk <mark>ov</mark>	$0.5 { m EeV}$			PUEO		$20 \mathrm{EeV}$
	IceCube-Gen	12 up(cascad <mark>e)</mark>	$300 { m TeV}$			fluorescence	$100 \mathrm{EeV}$		ARA			1-3 EeV
	KM3Net AR <mark>C</mark>	A up(cascade)	100(100) TeV		GRA	ND	$0.4 { m EeV}$		RNO-G			$1 { m EeV}$
	Baikal-GV <mark>D</mark>	up(cascade)	100(100) TeV		IceCub	e-Gen2 Rad <mark>io</mark>	$0.3 { m EeV}$		AR	IANNA-20	0	$1 { m EeV}$
	P-ON	E up(cascade)	$100 { m TeV}$			Ashra-N <mark>TA</mark>	$0.1 { m EeV}$		BE	ACON		$1 { m EeV}$
						Trinity	$0.1 { m EeV}$					
					TAM	1BO	10 PeV					
					R	ET-N	$0.1 { m EeV}$					

- Astrophysical **transients**: short (\leq few months) and irregular emissions
 - Powerful plasma outflows, but variety of observational characteristics, structure and evolution.
 Ex. supernovae, gamma-ray bursts, mergers, blazar flares, tidal disruption events, etc.
 - Improved instrumental sensitivity, time resolution, wide-field instruments
 → more observations, new categories of luminous transients discovered
 - Associations photons + HE neutrinos: first hints (background, model dependent)
 - Challenges: models require high proton luminosities

Neutrino event	Possible coincidence	90% area (sq. deg.)	Signalness
IC170922A	blazar flare TXS 0506+056	1.3	56%
IC190730A	blazar flare PKS 1502+106	5.41	67%
IC191001A	TDE AT2019dsg	25.53	59%
IC191119A	possible TDE AT2019aalc	61.1	45%
IC200107A	blazar flare 3HSP J095507.9+355101	7.62	_
IC200530A	possible TDE / Type IIn SLSN AT2019fdr	25.3	59%

- Astrophysical **transients**: short (\leq few months) and irregular emissions
 - Powerful plasma outflows, but variety of observational characteristics, structure and evolution.
 Ex. supernovae, gamma-ray bursts, mergers, blazar flares, tidal disruption events, etc.
 - Improved instrumental sensitivity, time resolution, wide-field instruments
 → more observations, new categories of luminous transients discovered
 - Associations photons + HE neutrinos: first hints (background, model dependent)
 - Searches for coincidences for various individual sources and population of sources
 - \rightarrow No dominant source population identified yet
 - Important multi-wavelength (MWL) and multi-messenger (MM) observing effort

2021 2025 >2030	Band Width	ν foll. rate [% alerts] <i>examples</i>	2021 2025 >2030	Band Width	u foll. rate [% alerts] <i>examples</i>	
LHAASO CTA HAWC H.E.S.S. MAGIC VERITAS Fermi LAT GBM INTEGRAL IBIS SPI-ACS	100 GeV-1 PeV 20 GeV-300 TeV 100 GeV-100 TeV 30 GeV-100 TeV 50 GeV-50 TeV 85 GeV-30 TeV 20 MeV-300 GeV 10 keV-25 MeV 15 keV-10 MeV 100 keV-2 MeV	? 20 h/yr (2016) [90% IC Gold alerts] 60-70 h/yr 60 h/yr, 15% ToO 45 h/yr [100% IC alerts] [60% IC alerts] [all ANTARES and GCN IC alerts]	SVOM ECLAIRs "MXT "VT ASAS-SN " ATLAS " Pan-STARRS " ZTF " Vera Rubin Obs. (LSST) MASTER-II((VWF)	$\begin{array}{c} 4-150 \text{ keV} \\ 0.2-10 \text{ keV} \\ 0.4-1 \ \mu\text{m} \end{array}$ $\begin{array}{c} 380-555 \text{ nm} \\ 420-975 \text{ nm} \\ 400-900 \text{ nm} \\ 400-650 \text{ nm} \\ 0.3-1 \ \mu\text{m} \\ 400-800 \text{ nm} \end{array}$	first 3 yrs: 15% ToO then: 40% ToO [70-80% all IC GCN alerts] [no ν alert yet] [6 follow ups] [6 follow ups] [74% IC Gold alerts] [99% GCN neutrino alerts] [99% GCN neutrino alerts] [99% GCN neutrino alerts] SN PTF12csy TXS 0506+056, IC190331A TXS 0506+056, ANTARES events	
XMM-Newtön " Athena-WFI Swift BAT XRT" UVOT	0.2-12 keV 0.1-15 keV 15-150 keV 0.2-10 keV 0.16-0.62 μm	<i>PKS 1502+106, Kloppo</i> [5 ToO/month] 50% ToO	GEMINI (GMOS) GTC (OSIRIS) Keck (LRIS) VLT (X-shooter)	$\begin{array}{c} 350-380\ \mathrm{hm}\\ 0.36-1.03\ \mu\mathrm{m,\ spec}\\ 0.365-1.05\ \mu\mathrm{m,\ spec}\\ 0.32-1\ \mu\mathrm{m,\ spec}\\ 0.3-2.4\ \mu\mathrm{m,\ spec}\\ 1-50\ \mathrm{GHz} \end{array}$		
			MWA SKA1(2)-MID	80-300 MHz 350 MHz-15.3 GHz	[30% IC Gold, >30% ANTARES] ?	

Part of table from: Guépin, Kotera & Oikonomou, Nature Rev. Phys., arXiv 2207.12205

- Astrophysical **transients**: short (\leq few months) and irregular emissions
 - Powerful plasma outflows, but variety of observational characteristics, structure and evolution.
 Ex. supernovae, gamma-ray bursts, mergers, blazar flares, tidal disruption events, etc.
 - Improved instrumental sensitivity, time resolution, wide-field instruments
 → more observations, new categories of luminous transients discovered
 - Associations photons + HE neutrinos: first hints (background, model dependent)
 - Searches for coincidences for various individual sources and population of sources
 - \rightarrow No dominant source population identified yet
 - Important multi-wavelength (MWL) and multi-messenger (MM) observing effort
 - Important MWL/MM modeling effort

Database for transient neutrino models: https://www.lupm.in2p3.fr/users/guepin

HUNT-MDB is a HE to UHE Neutrino Transient Model Data Base.

On this website, you can find selected literature related to the modeling of HE to UHE Neutrino Transients:

- Use the database to generate custum tables of neutrino transient models.
- · Read the manual for model properties.
- Get more information concerning transient sources.
- Gain insight into the existing and open-source simulation tools.

CRPropa Workshop on Astroparticle Propagation

High-energy universe and compact sources: emissions, physical processes?

HE - UHE cosmic-rays and neutrinos: sources and production mechanisms? Advances of multi-wavelength/multi-messenger and transient astronomy

Modeling propagation and interaction of various messengers in the source vicinity

\rightarrow Why is it important?

- Distinction between source classes.
 - Ex. various classes of SNe, FBOT, TDE
- Use of spatial & temporal properties
 - Ex. describe radiation/acceleration regions, predict SED & lightcurves
- Link between observations and physical processes in sources, ex. plasma physics, particle interactions, jet or wind properties.
 - Ex. identify hadronic & leptonic emissions with VHE particles, or with X-rays/gamma rays from cascaded gamma rays
 - Ex. identify MM signatures for various hadronic components: interaction of cosmic rays, production of secondary nucleons, nuclei, neutrinos?

High-energy universe and compact sources: emissions, physical processes?

HE - UHE cosmic-rays and neutrinos: sources and production mechanisms? Advances of multi-wavelength/multi-messenger and transient astronomy

Modeling propagation and interaction of various messengers in the source vicinity

\rightarrow Various challenges

- Astrophysical transients: variety of observational characteristics, structure and evolution
 - Ex. emission directionality and time-dependence
- Dense environments, test particle approximation not necessarily valid
 - Ex. difficulty of including simplified description of particle acceleration or propagation
- Feedback of particle interactions and radiation on same/other particle distributions
 - Ex. radiation of leptons, interaction backgrounds for hadrons; propagation of photon backgrounds
- Uncertainties related to various modeling aspects
 - Ex. spatial properties mentioned above, but also interaction cross sections and secondary products

High-energy particles from astrophysical transients - A general view

In the vicinity of the source:

- Lepton & cosmic-ray (CR) acceleration and escape
- Radiation of leptons and cosmic rays
- CR interactions with photon / baryon backgrounds
 - neutrino production
 - interaction channels: ex. production of charged pions, charged kaons, charm hadrons
 - subsequent decays: ex. $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ and
 - $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_{e'}$ and nuclear decays
 - gamma-ray (GR) production: $\pi^0 \rightarrow \gamma \gamma$

High-energy particles from astrophysical transients - A general view

Competing processes for lepton, cosmic-ray, neutrino & gamma-ray production in the vicinity of the source: acceleration, energy-losses, interactions, decays, escape + interstellar, inter/extragalactic propagation: CR deflections, CR & GR interactions

Characterizing directionality and time-dependence in the context of MWL/MM emissions

→ account for some macroscopic characteristics and some micro-physics processes

In the vicinity of the source:

- one zone models, multi-zone models
- when required by multi-wavelength/messenger data: two-zone models: ex. acceleration treated prior to interactions or radiation, or external radiation background

Source geometry and emission directionality:

- disk, corona, outflow, jet
- debris stream, dust clouds

Source evolution and time-dependent emissions, delays:

- outflow expansion, propagation of shock fronts in jets
- propagation of photons
- dilution of background material

CRPropa Workshop on Astroparticle Propagation

infalling stream

Physical processes at play

- **typical timescales** used to compare the effect of various processes, identify dominant processes in the source reference frame, ex. frame comoving with plasma flow
- acceleration: $t'_{acc} = \eta_{acc}^{-1} E' (cZeB')^{-1}$
- evolution of radiation region, confinement: $t'_{dyn} = (1 + z)^{-1} \delta t_{var}$
- energy-loss timescales: synchrotron radiation, inverse Compton, photopion production, photodisintegration, Bethe-Heitler pair production, pair production, hadronic interactions
 - \rightarrow ex: photopion production, above the pion production threshold $E'_p \simeq 10^{17} \, \text{eV} \, (1 \, \text{eV} / \epsilon')$

$$t'_{N\gamma}^{-1} = \frac{c}{2\gamma'^2} \int_0^\infty \frac{\mathrm{d}\epsilon'}{\epsilon'^2} \frac{\mathrm{d}n'_{\gamma}}{\mathrm{d}\epsilon'}(\epsilon') \int_0^{2\gamma'\epsilon'} \mathrm{d}\bar{\epsilon} \,\bar{\epsilon} \,\sigma_{N\gamma}(\bar{\epsilon})$$

Source and emission properties, notations

- mean magnetic field B', Lorentz boost δ , redshift z,
- variability timescale $t_{\rm var'}$ bolometric luminosity $L_{\rm bol'}$
- photodisintegration cross section $\sigma_{N\gamma'}$ acceleration efficiency $\eta_{\rm acc'}$
- photon energy ϵ' , photon spectrum $n'_{\gamma'}$, particle energy / Lorentz factor E'/γ' , particle charge Ze

Physical processes at play

• **typical timescales** used to compare the effect of various processes, identify dominant processes in the source reference frame, ex. frame comoving with plasma flow

CRPropa Workshop on Astroparticle Propagation

Spatial and time-dependent modeling

- Multi-wavelength (MWL) and multi-messenger (MM) predictions with lepto-hadronic processes
 + time dependent predictions
- Typical methods: successive steady "snapshots", combination between transport equations and monte carlo / parametric treatment of interactions and production of secondaries
- Extensive follow-up observation campaigns required, account for propagating photons
- Ex. MWL and HE-UHE neutrino lightcurves

- In general, importance of accounting systematically for leptonic and hadronic processes
 - Account for photon cascades, potential constraints on hadronic components.
 - Ex. gamma rays produced through π^0 decay, and $\gamma\gamma \rightarrow e^+e^-$ cascades

Example: TXS 0506+056 + IC170922A, Keivani et al., arXiv:1807.04537

CRPropa Workshop on Astroparticle Propagation

- Account for various interaction channels
 - Ex. HE to UHE neutrino modeling: time-dependence and contribution of charm hadrons
 - Ex. photodisintegration and energy dependence

Example: Charm contribution to UHE neutrinos from newborn magnetars J.A. Carpio et al. (2020), arXiv:2007.07945

- Processes affecting primary and secondary particles
 - Ex. HE to UHE neutrino emissions: acceleration of secondary charged pions and muons
 - Ex. photohadronic processes and acceleration of secondary electrons and positrons

CRPropa Workshop on Astroparticle Propagation

- Processes affecting primary and secondary particles.
 - Ex. HE to UHE neutrino emissions: charged pion cascades in some dense photon backgrounds. Impact for short GRBs?

Example: parameter space study

Interaction of charged pions with photons, broken power law peaking in X-rays

CRPropa Workshop on Astroparticle Propagation

- Towards more precise description of **particle distributions**: account for **anisotropies** in distributions (leptons, hadrons, photons) and their impact on radiation and interactions
- Ex. impact or particle distribution on synchrotron radiation (Comisso et al. 2020, arXiv:2004.07315)
- Ex. impact of "external" radiation backgrounds, ex. jet models for active galactic nuclei
 - Frame of emission of "external" radiation background versus comoving frame of jet
 - Small factors affecting photopion production, photopair production or gamma gamma pair production, but potential for cumulative effects

Sources of uncertainties

- Source parameters, degeneracies due to lack of observational constraints
 - Electromagnetic fields: impact on propagation, acceleration, radiation
 - Cosmic-ray luminosity and composition
 - Interaction backgrounds and interaction processes
 - Lorentz boost, collimated or isotropic emissions
- Large-scale propagation and interactions, backgrounds
- Systematic exploration of parameter space, or parameter ranges and uncertainties displayed

Variety of existing tools

- As for modeling, limitations related to the range of spatial and energy scales to be considered
- Self-consistent treatments, evolution of the properties of the particles coupled with the evolution of the electromagnetic fields: ex. PIC simulations; hybrid, MHD-PIC, PIC with Monte Carlo
- Simplifying assumptions: test-particle assumption, Monte Carlo methods and partial differential kinetic equations solvers... Check database, future list of simulation tools (<u>https://</u> <u>www.lupm.in2p3.fr/users/guepin</u>)
- (Historical?) decoupling between codes oriented towards hadronic processes and leptonic processes. First ones tackle well interaction of nuclei and secondaries, second radiation processes and cascades, thus multi-wavelength emissions.
- Efforts underway by several groups to produce coupled versions of cosmic-ray interaction and time-dependent radiative codes

High-energy universe and compact sources: emissions, physical processes?

HE - UHE cosmic-rays and neutrinos: sources and production mechanisms? Advances of multi-wavelength/multi-messenger and transient astronomy

Modeling propagation and interaction of various messengers in the source vicinity

\rightarrow Why is it important?

- Distinction between source classes.
- Use of spatial & temporal properties to describe radiation regions, predict SED & lightcurves
- Link between observations and physical processes in sources, ex. plasma physics, particle interactions, jet or wind properties.

\rightarrow Various challenges

- Astrophysical transients: variety of observational characteristics, structure and evolution
- Dense environments, test particle approximation not necessarily valid
- Feedback of particle interactions and radiation on same/other particle distributions
- Uncertainties related to various modeling aspects

CRPropa Workshop on Astroparticle Propagation