Fitting an astrophysical model for the origin of ultra-high-energy cosmic rays

Model setup & Sensitivity study

CRPropa workshop, Madrid, 13.09.2022 **Teresa Bister**, Josina Schulte, Martin Erdmann

Motivation

What are the sources of ultra-high-energy cosmic rays?

many open questions: sources, acceleration, propagation, magnetic fields, mass composition...

Detection of UHECRs

Three reconstructed properties of the primary cosmic ray:

- 1. arrival direction
- 2. energy
- 3. depth of the shower maximum X_{max} (\rightarrow charge)
- → use these to identify sources

The Pierre Auger Observatory

- located near Malargüe, Argentina
- largest UHECR detector world-wide: area of 3000 km²
- hybrid detection:
 - grid of 1600 + 60 water Cherenkov stations (SD) \rightarrow 1500m / 750m grid, 100% duty cycle
 - 4 sites of fluorescence telescopes (FD)
 - \rightarrow 24 + 3 telescopes, ~15% duty cycle
- update ongoing: AugerPrime

Arrival directions

Arrival directions

Are SBGs truly favored above the other catalogs?

 \rightarrow no, strongest sources into similar directions

likelihood function:

$$\mathcal{L}_{\text{AD-only}}(f_{\text{AD-only}}, \delta_{\text{AD-only}}) = \prod_{i} \text{pdf}_{i}(\vec{v}_{i}))$$

test statistic:

$$TS_{AD-only} = 2 \log \frac{\mathcal{L}_{AD-only}(f_{AD-only}, \delta_{AD-only})}{\mathcal{L}_{AD-only}(f_{AD-only} = 0)}$$

33

Fitting a model for the UHECR origin - Teresa Bister

Arrival directions

Are SBGs truly favored above the other catalogs?

 \rightarrow no, strongest sources into similar directions

- use combined fit of arrival directions
 - + energy spectrum
 - + Xmax
 - better source catalog differentiation
 - also constrain parameters of source emission
- for that: build more physical model
 - include propagation, energy-dependent catalog contribution, rigidity-dependent magnetic field blurring...

Model: reference case

•		
	1	

				Eng.
				X
(— C	listan	ce d

- source distribution:
 - only homogeneously distributed sources (in reference case)
 - isotropic arrival directions \rightarrow not included as observable
 - can study propagation in 1d instead of 3d
 - expectation: flat distribution of flux per comoving distance shell
- source evolution:
 - simple description via: $\psi(z) \propto \left(1+z
 ight)^m$
 - for SBGs: m~3.4 (starformation rate / SFR)
 - \rightarrow more sources in the past
 - for AGNs: m~5.0

Model: reference case

	V.
-	distance d

source distribution:

- isotropic arrival directions \rightarrow not included as observable
- can study propagation in 1d instead of 3d
- expectation: flat distribution of flux per comoving distance shell

redshift z=z(d)

- source evolution:
 - simple description via: $\psi(z) \propto (1+z)^m$
 - for SBGs: m~3.4 (starformation rate / SFR)
 - \rightarrow more sources in the past
 - for AGNs: m~5.0

 injected spectrum 10^{-} Z=7Z = 14 $J_{\rm mj}(E_{\rm mj})$ / a.u. - Z=26 10^{-} 10^{-} 10 20.0 18.5 19.0 19.5 20.5 21.0 $\log_{10}(E_{\rm ini}/{\rm eV})$

Model: reference case

Propagation database

1d CRPropa3 simulations	s in the	following	binning:
-------------------------	----------	-----------	----------

Parameter	bin edges	number of bins	
injected distance d	1 - 5670 Mpc Z~2	118	logarithmic
injected mass $A_{\rm inj}$	1, 4, 14, 28, 56	5	
injected energy $E_{\rm inj}$	$10^{18.0}~{\rm eV}$ - $10^{21}~{\rm eV}$	150	logarithmic
detected mass A_{det}	1, 2-4, 5-22, 23-38, > 39	5	
detected energy $E_{\rm det}$	$10^{18.0} \ {\rm eV}$ - $10^{21.0} \ {\rm eV}$	150	logarithmic

- in total 10⁴ particles for each of the 118*5*150 = 88500 injection bins
- interactions: consider nuclear decay, electron pair production, photopion production, photodisintegration, adiabatic losses
 - *Gilmore* model for extragalactic background light
- reweight according to injection & source evolution
 - \rightarrow calculate modeled observables on Earth from $p_{\text{back}}(E_{\text{det}}^e, A_{\text{det}}^k)$

Simulated observables

- energy spectrum: sum over detected particles
 - (include *forward folding* with detector resolution when fitting on real data)

$$p(E_{det}^{e}) = \sum_{k} p_{back}(E_{det}^{e}, A_{det}^{k})$$
$$J(\tilde{E}_{det}^{e}) = \frac{p(\tilde{E}_{det}^{e})}{(\mathcal{E}_{vert} + \mathcal{E}_{incl}) \Delta \tilde{E}_{det}^{e}}$$

 $X_{\rm max}$

- parameterize with Gumbel distributions -
- hadronic interaction model: EPOS-LHC
- (fold with detector resolution & acceptance)

Simulated observables & Likelihood

- energy spectrum: sum over detected particles
 - (include *forward folding* with detector resolution when fitting on real data)

parameterize with Gumbel distributions

hadronic interaction model: EPOS-LHC

900

shower depth distributions:

 $p(E_{\rm det}^e) = \sum_{k} \hat{p}_{\rm tot}(E_{\rm det}^e, A_{\rm det}^k)$ $J(\tilde{E}_{\rm det}^e) = \frac{p(\tilde{E}_{\rm det}^e)}{(\mathcal{E}_{\rm vert} + \mathcal{E}_{\rm incl}) \ \Delta \tilde{E}_{\rm det}^e}$

as in: The Pierre Auger Collaboration, A. Aab et al. "Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory". Journal of Cosmology and Astroparticle Physics 2017.04 (2017), 038-038. DOI: 10.1088/1475-7516/2017/04/038

Inference methods

- defined astrophysical model •
 - \rightarrow infer best-fit parameters according to likelihood
- 2 inference methods: •

- gradient-based minimizer ٠ for the best-fit / maximum-likelihood estimate
- Markov-Chain-Monte-Carlo sampler ٠ for posterior distributions
 - \rightarrow Sequential MC from \triangle

→ Sequentian MC non SPYMC	fit parameter	prior	borders	
0-0-0	spectral index γ	uniform	-4 to 3	
narameters for the source injection	rigidity cutoff $\log_{10}(R_{\rm cut}/{\rm V})$	uniform	19.0 V to 20.5 V	refei
$J_{\text{inj}}(E_{\text{inj}}, A_{\text{inj}}) = J_0 \cdot a_A \cdot \left(\frac{E_{\text{inj}}}{10^{18} \text{ V}}\right)^{-\gamma} f_{\text{cut}}\left(\frac{E_{\text{inj}}}{7 \text{ D}}\right)$	element fractions	unit simplex	0 to 1	mod
(10^{10} eV) $(Z_A R_{\text{cut}})$	flux normalization J_0	uninformative		
for including catalog sources	signal fraction f_0	uniform	0 to 1	
	magnetic field blurring δ_0	uniform	0 to 15 (0° - 86°)	
for including experimental	syst. energy scale ν_E	uniform	-4 to 4	
systematic uncertainties	syst. energy $X_{\max} \nu_{X_{\max}}$	uniform	-4 to 4	
for a sector of a sting of a sector field of	X_s	uniform	0 to 30	
tor extra-galactic magnetic field	E_c	uniform	0 to 30 EeV	

rence lel

Results of reference model (SFR evolution)

Catalog sources & arrival directions

- goal: fit energy spectrum, shower depth distributions & arrival directions simultaneously
 - add catalog sources to model \rightarrow investigate expected arrival directions

• in <u>CR</u>/Propa : 3d / 4d simulations?

- preliminary fit with EGMF & 4d simulations:
- for structured EGMF models: direction matters
 - for fit with arrival directions: would need different propagation database in every direction
 - small observer size to prevent distortions
- <u>other possibilities:</u>
 - 2-step approach
 - fit only E & Xmax / take published parameters, then evaluate predicted arrival directions
 - can include structured E(GMF) models
 - simplify propagation
 - 1d propagation + 3d reweighting to source setup
 → here: simplified propagation models
 - structured GMF models

Fitting a model for the UHECR origin - Teresa Bister

very slow!

Catalog sources & arrival directions

- goal: fit energy spectrum, shower depth distributions & arrival directions simultaneously
- add catalog sources to model \rightarrow investigate expected arrival directions

in **CR**/Propa : 3d / 4d simulations?

- preliminary fit with EGMF & 4d simulations:
- for structured EGMF models: direction matters
 - for fit with arrival directions: would need different propagation database in every direction
 - small observer size to prevent distortions
- other possibilities:
 - 2-step approach
 - fit only E & Xmax / take published parameters, then evaluate predicted arrival directions
 - can include structured E(GMF) models
 - simplify propagation
 - 1d propagation + 3d reweighting to source setup (here: simplified propagation models)
 - can include structured GMF models

D. Wittkowski for the Pierre Auger Collaboration PoS(ICRC2017) DOI: 10.22323/1.301.0563

- B. Eichmann, J.P. Rachen, L. Merten, A. van Vliet and J. Becker Tjus, Ultra-high-energy cosmic rays from radio galaxies, Journal of Cosmology and Astroparticle Physics **2018** (2018) 036.
- A. van Vliet, A. Palladino, W. Winter, A. Taylor and A. Franckowiak, Extragalactic magnetic fields and directional correlations of ultra-high-energy cosmic rays with local galaxies and neutrinos, in Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021), vol. 395, p. 470, July, 2021, DOI.
- D. Allard, J. Aublin, B. Baret and E. Parizot, What can be learnt from UHECR anisotropies observations I. Large-scale anisotropies and composition features, Astronomy & Astrophysics 664 (2022) A120.

very slow!

C. Ding, N. Globus and G.R. Farrar, The Imprint of Large-scale Structure on the Ultrahigh-energy Cosmic-Ray Sky, The Astrophysical Journal Letters **913** (2021) L13.

B. Eichmann, M. Kachelrieß and F. Oikonomou, *Explaining the UHECR spectrum, composition* and large-scale anisotropies with radio galaxies, JCAP **07** (2022) 006.

Including catalog sources in the model

Signal fraction

 \rightarrow catalog contribution rises with energy: catalog sources closer

Fitting a model for the UHECR origin - Teresa Bister

Simulated arrival directions: catalog sources

- neglect coherent Galactic magnetic field
 - overdensities situated around candidates
 - in halo turbulent field might be > coherent field (see e.g. arXiv:2202.06780)

0.4 0.6 0.8

longitud

5 10 1 Flux [10⁻³ km⁻² sr⁻¹ vr⁻¹]

Simulated arrival directions: signal fraction

weight with signal fraction function:

Total likelihood function

comparison: likelihood function for only AD analysis $\mathcal{L}_{AD-only}(f_{AD-only}, \delta_{AD-only}) = \prod_{p} pdf^{p}(\vec{v_{p}}))$ one value for whole data set!

advantages:

- whole energy dependency in model
 - signal contribution depends on propagation
 - rigidity-dependent blurring
 - still only 2 fit parameters (F_0 , δ_0)
- no need to scan energy threshold
- more physically correct model: should fit better...

Benchmark simulation

Benchmark simulation

Fit of benchmark simulation: SBG model

Fit of benchmark simulation: AGN model

Fit of benchmark simulation: comparison

Test statistic: 2*likelihood ratio compared to reference model with $f_0=0$:

	y-AGNs	SBGs
TS	0.4	35.6
ΤS _E	-2.8	9.8
TS _{xmax}	0.6	-0.6
TS _{ADs}	2.6	26.4

on this example simulation: correct model easily identified

statistically significant?

Sensitivity

calculate test statistic of all 200 random representations of benchmark simulation:

- EGMF can be described by (rms) field strength B and coherence length l_{c}
- follow Mollerach & Roulet

S. Mollerach and E. Roulet. "Extragalactic cosmic rays diffusing from two populations of sources". *Physical Review D* 101.10 (2020), 103024. DOI: 10.1103/PhysRevD.101.103024.

• critical energy:

$$r_L(E_c) = l_c \quad \rightarrow \quad E_c = Z \ e \ B \ l_c \simeq 0.9 \ Z \ \frac{B}{\text{nG}} \frac{l_c}{\text{Mpc}} \text{EeV}$$

- scale parameter: $X_s := \frac{d_s}{\sqrt{R_H l_c}} \simeq \frac{d_s}{65 \text{ Mpc}} \sqrt{\frac{\text{Mpc}}{l_c}}$ relates coherence length l_c to typical source distance d_s (here SBGs: $n_s = 10^{-5} \text{ Mpc}^{-3}$)
- EGMF influence on the cosmic ray energy spectrum:
 - suppression of further away sources due to diffusion $G(E) = \frac{J(E)}{J(E)|_{d \to 0}}$
 - parameterized suppression factor G as a function of X_s & E_c
 - multiply with modeled spectrum
- EGMF influence on arrival direction:
 - calculate from X_s, E_c & rigidity for non-resonant scattering approximation
 - use in Fisher distributions $\beta_{\text{EGMF}}(d, R = E/Z, l_c, B) = 25^{\circ} \cdot Z \cdot \sqrt{\frac{l_c}{\text{MDC}}} \cdot \sqrt{\frac{d}{\text{MDC}}} \cdot \frac{\text{EeV}}{E} \cdot \frac{B}{nC}$

²⁹/33

- EGMF can be described by (rms) field strength B and coherence length l_{c}
- follow Mollerach & Roulet

S. Mollerach and E. Roulet. "Extragalactic cosmic rays diffusing from two populations of sources". *Physical Review D* 101.10 (2020), 103024. DOI: 10.1103/PhysRevD.101.103024.

critical energy:

$$r_L(E_c) = l_c \quad \rightarrow \quad E_c = Z \ e \ B \ l_c \simeq 0.9 \ Z \ \frac{B}{\text{nG}} \frac{l_c}{\text{Mpc}} \text{EeV}$$

- scale parameter: $X_s := \frac{d_s}{\sqrt{R_H l_c}} \simeq \frac{d_s}{65 \text{ Mpc}} \sqrt{\frac{\text{Mpc}}{l_c}}$ relates coherence length l_c to typical source distance d_s (here SBGs: $n_s = 10^{-5} \text{ Mpc}^{-3}$)
- EGMF influence on the cosmic ray energy spectrum:
 - suppression of further away sources due to diffusion $G(E) = \frac{J(E)}{J(E)|_{d_s \to 0}}$
 - parameterized suppression factor G as a function of X_s & E_c
 - multiply with modeled spectrum
- EGMF influence on arrival direction:
 - calculate from X_s , $E_c \& rigidity$ for non-resonant scattering approximation
 - use in Fisher distributions $\beta_{\text{EGMF}}(d, R = E/Z, l_c, B) = 25^{\circ} \cdot Z \cdot \sqrt{\frac{l_c}{\text{Mpc}}} \cdot \sqrt{\frac{d}{\text{Mpc}}} \cdot \frac{\text{EeV}}{E} \cdot \frac{B}{nG}$

³⁰/33

Fit with EGMF: SBG model

Fit with EGMF: EGMF parameters

 $P(\theta|d)$

- can calculate EGMF parameter posteriors from E_c and X_s posteriors
- e.g. EGMF blurring $\beta_{\rm e}$: expected anticorrelation with local blurring visible
- calculate posteriors for *B* and I_c \rightarrow could set limits
- overestimates EGMF field strength B
 - would work better for stronger field strengths with larger suppressions up to higher energies
 - or: decrease energy threshold and model also lower energies where suppression has larger impact

demonstration that principle works, but not optimal application

Conclusion

eV²) (10

- demonstrated simultaneous combined fit of energy spectrum, shower depth distributions, and arrival directions
- astrophysical model is assembled from 1d CRPropa3 simulations:

 \rightarrow fast, easily adaptable to include e.g. (E)GMF

- benchmark simulation with SBGs as sources can reproduce all 3 observables
- significantly larger sensitivity to distinguish catalogs

Sensitivity to best-fit parameters

for incorrect model:

often reconstructs signal fraction $f_0=0$ because observables cannot be described with wrong catalog

for correct model: reliable reconstruction of simulated truth

35/33

Conversion of TS to significance

apply analysis on isotropic simulations

T. Bister for the Pierre Auger Collaboration, A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources, in Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021), vol. 395, p. 368, 2021. DOL

 $\simeq 1.7 \cdot 10^{-3}$

isotropy tail follows X² distribution with ndf=2 (SBG model has 2 more fit parameters: f_{α} , δ_{α})

 $p_{\rm SBG} \simeq 9 \cdot 10^{-8}$ $p_{\rm AGN} \simeq 5 \cdot 10^{-3}$ → analysis can identify true simulated SBG model

- more sensitive than AD-only analysis on same simulation: $p_{SBG}^{AD-only, \text{ pre-trial}} \simeq 6.1 \cdot 10^{-6} p_{AGN}^{AD-only, \text{ pre-trial}}$
- no need for energy threshold scan \rightarrow no penalization

