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Part 1. Intro
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Relativistic Quantum Mechanics
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Quantum Electrodynamics

Experiment
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g-2 measurement principle

Feed fast muons into a magnetic field!
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g-2 experimental summary
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Two new experiments plan to reduce error to 1.6 - 10~1°

» Fermilab E989: already taking data, first results end
of 2018, final in 2020

» J-PARC E34: starts data taking in 2020



g-2 from theory

What contributes to aahe"?

Knowns

QED £~10°
2
QCD (%)2 (ﬂ> ~1077 — is it under control?
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weak & (M), 1079
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QED contribution [Kinoshita et al '15]

Diagrams with only photons and leptons.

12672 diagrams at five loops
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Automated diagram generation, numerical evaluation of
integrals, only some diagrams known analytically.



QED contribution

Inputs are m,,/me, m,/m; and «, « taken from ae:

o (ae) = 137.035999069(96) 13 digits precision!

n-loop ad"™ x 1010
1 11614097.330(0.008)

2 41321.762(0.010)

3 3014.190(0.000)

4 38.081(0.030)

5 0.448(0.140)
total | 11658471.811(0.160)

a® — aF*P = 737.2(6.3) x 10710



Weak contribution [Gnendiger et al '15]

1-loop ajy***() = 19.480(1) x 10~ 1°

2-loop a2 = —4.12(60) x 10—10
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ag® — al™® — aVeek = 721.8(6.3) x 10710



QCD contributions
LO hadron vacuum polarization (LO-HVP, (%)2)

NLO hadron vacuum polarization (NLO-HVP, %) )

BN AR AN

Hadronic light-by-light (HLbL, (£)3)




HVP from e"e~ — hadrons [Bouchiat et al '61]

q q
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My (@) = (quav — 9uvq?) TI(G?)

4m,/ Re(a®)
Use a dispersion relation (analiticity)
2y _ oo ? 1
and the optical theorem (unitarity)
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HVP from experiments

Use ete  — had data of CMD, SND, BES, KLOE, BABAR, etc:
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Recent determinations

LO 688.1(4.1) [Jegerlehner "17]
LO 692.6(3.3) [Davier *16]
LO 694.9(4.3) [Hagiwara et al '11]
NLO -9.87(0.09) [Kurz et al "14]
NNLO 1.24(0.01) [Kurz et al '14]

ag® — ad™ — a¥ek — alVP = 37.8(7.1) x 10710



HLDbL estimates

Only O(o®) but very complicated.
Involves TT,vxp(q1, g2, g3, k) with 47 Lorentz invariants of
which 12 contribute to a,, [Colangelo et al '14]

Not fully related to experimental observables — model
estimates [Bijnens, Hayakawa, Nyffeler et al] — world average

aELbL ~ 10.5(2.6) x 10710 [Prades et al *09]

New dispersive approach [Colangelo Lat17] and lattice
[Mainz, RBC/UKQCD] in progress.



A 3 - 40 discrepancy

aZ® — af*P — aveak — gffVP _ gHIbL — 27 3(7.6) x 1010
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Discrepancy is about 2x electroweak contribution.



Outlook
Error budget

(7.6) = (6.3)exp(0.2)gED(0.6)weak (3-3)ave(2.6)HLbL
exp: Fermilab E989 and J-PARC E34 aim for (1.5)exp
HVP and HLbL: lattice QCD with controlled errors

No new physics requires

v

4% larger HVP, ie. a/'? =720.0(6.8) x 10~ 1°

v

360% larger HLbL, ie. all*™- =37.9(7.1) x 10~1°

For new physics
assuming central values remain the same

» E989 + same theory errors 60

» E989 + HLbL 10% + HVP 0.2% 110



Part II. LO-HVP from lattice QCD



af‘”’ from the lattice [Blum '02]

M (@) = (quGv — Guv@?) TT(G?)

W 4m;? Re(a?)

Consider the diagram in Euclidean instead (qo — —i(gr)o):

~ x\2 oo
aﬁo HVP _ (;) Ips dqz w(q2) T(gZ)

» w known function, describes the non-HVP part

» T1(ge) can be obtained from the lattice current-current
correlator

» charge renormalization requires TT(0) = O



HVP :
a;"" integral

a, = [ dq® w(g*)N(g?)

For small momenta T~ g%, w~ 1/¢?

Integrand is peaked around q = m, /2 — T1(g?) has to be
computed precisely for small momenta.
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For small momenta TT(g?) can be nicely approximated by first
few derivatives: slope IT'(0) - curvature IT”(0)



Lattice details
Recipe
1. Measure TT,,(q) = Y, €% (j, (x)jy(0)) on the lattice
2. Extract TT from My = (§.gv — 8,v@®) TI(g?) + ...
Problems

» non-conserved current requires multiplicative renorm.

» TI(q) is only for discrete momenta — interpolation?

)

1(0)
L on
]
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» T1(0) is not directly accessible — extrapolation??



Moments [HPQCD '14]
M(g?) =T'(0)- P +T1"(0) - § + ...
Start from continuum, infinite box:
J dx ¥ (j. (x)iv (%)) = (quaqv — 8,va*)TT(q?)
and Taylor expand both sides in q. You get
T'(0) = 5 [dt t*C(t), T1”(0) = —=35 [ dt t°C(t),
C(t) is zero momentum timelike jj-propagator

On the lattice calculate

M(0) =& ¥ (/21 5y t5C(D), ...

and use in the Taylor expansion:

» T1(g?) as a continuous function of ¢?

» renormalized by construction IT(0) =0

Note: Pade instead of Taylor for improved convergence (first 2 orders suffice!)



Master formula [Bernecker et al '11, RBC/UKQCD ’14 ’16]

Put back the expansion coefficients into the expansion:

M@ = X120 9=+ 5] )

and finally into the a,,-integral a, = [dg® w(q?®)TT(¢?)

a}I:.IVP = ZZ‘=/3T/2+1 W(t, mp.a) C(t)

a lattice spacing, W is known kinematical function
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Contributions

Decompose the current as
F_ 2 1 1 2
Ju =gl — gdu —3Su+ 3¢
Assuming isospin symmetry the correlator is

(ify ~ C(t) = C*4 + CS + C° 4 C¥sc

v

ud has poor signal for large t and is very sensitive to
finite box size — needs high statistics and tricks

v

s “nothing to see here”

v

¢ has large lattice artefacts

v

disc SU(3) suppressed (vanishes if mg = myq)
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Simulations [1612.02364, 1711.04980]

Landscape
1.06 T T
B B =3.7000 (1)
+H 8= : 2
o = » Ny =2+ 1+ 1 smeared
. B = 3.8400 (3
B = 3.9200 :4; Staggered
B = 4.0126 (4) . . .
ol . » 15 high statistics
. 5 simulations
00} o . .
* » bracketing physical
sl g \ quark masses
I * . .
» 6 lattice spacings
Nor0os 00 100 10T 10z 103 » LL>6fm
M2/f2 ~
M) 2
Techniques

conserved EM current - EigCG - Low Mode Averaging -
All Mode Averaging [Blum et al '13] - close to 10M/40M
conn/disc measurements



Noise reduction

Noise/signal grows exp[(M, — My)t].

Consider upper/lower bounds

See also [Lehner '15]

Connected I = 1

0 < C¥(t) < CU(t,)eferlt=t)

Disconnected I =0

< icud

< — disc
0<-C™() < 15

(te) e (t—t)

>
”%HHM]ﬁ% |
% 150 2'35‘55:: ‘,
e mew f

For t > t. bounds meet, replace C(t) by average bounds .
Vary t. for systematics.



Disconnected isn’t difficult

0 ! ! " BMWc'17 —e—
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LO-HVP

au,disc
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Contrary to earlier expectations

» easy to measure — use LMA and approximate SU3
symmetry [Francis et al "14]

» small — ~ 2% instead of 10% [Juttner, DellaMorte '10]

Also measured charm disconnected, wich is really tiny.
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Strong continuum
extrapolation for aﬁd due
to taste violations and for
a;;, due to large me

Get continuum systematic
from all results and by
cutting results with
a>0.134, 0.111, 0.095fm



Matching to perturbation theory
Restrict integral a,, = [ w(q?)T(g?) to gmax! Consider separation

_ latt pert match
a,=a; +ap +a,

with
1 max 2 2
aftt = | wie?) - T
pert it 2 2 2 match __ *© 2 2 2
a, = w(q ). [”(q ) — ﬂ(qmax”; a, = dq w(q )| - n(qma.x)
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300 z -
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> *— .
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> 2GeV? — lattice matches

~

Result is independent of ¢2,,
perturbation theory perfectly, ie. TI(gZ — o) is under control.



Finite volume effect

Work in fixed physical volume — FV effect cannot be estimated
from simulations. Use estimates now.

Long distance dominated by 27

-

FV effects are exponentially suppressed, but can be large.

Recent results

» Leading order XPT [Aubin et al '16] just the wt7t~ loop - no
interaction between pions

» Interacting pions [Francis et al '13] determine energy
levels and matrix elements of 2-pion states in a finite box
[Lellouch-Luscher] from experiment data [Gounaris-Sakurai]

— “Free theory is smaller by factor 1.5-2.0”
» dedicated FV study with L = 9fm [Izubuchi et al '18]



Finite volume effect, etc.

Aay

LOXPT —e—
4 5 6 7 8 9 10
Lifm]

We corrected the results by LO XPT and lack of numerical
evidence we assigned 100% error to this correction.

Isospin breaking

We also corrected results for QED and m,, # my effects, by
taking the missing effects from the dispersive approach, again
with a conservative error

Apa, =7.8(5.1) x 10710



Results

LO-HVP 10
a, .10

BMWec L=6fm I I I l——.——ll I '
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, , , No new physics

620 640 660 680 700 720 740

Consistent with both no new physics and phenomenology.

HPQCD gets 20 smaller, discrepancy in light contribution.

Error budget:

(2-7) % = (1-1)stat(1-l)cont(o-s)scale(1-9)FV(0~7)QED %

Moments [1612.02364], a. and a. have also been determined



Outlook - going for 0.2%

QED compute QED and m, # my effects - no high precision is
needed, but there are many diagrams [ETM '17, RBC/UKQCD
17 °18]

a[fm] to reach 0.2% error from the scale, need < 0.1% error on
the scale, since [IT"] = GeV 2 - current w, determinations have
~0.5%

FV understand and control FV effects much better, eg. dedicated
studies [Izubuchi et al 18]

noise currently ~1.0%, increase statistics



Super(?)computers

JUQUEEN will be shutdown completely no
later than Tuesday 22nd of May.

IBM BGQ | Intel KNL | Nvidia 6x Volta

bandwidth[GB/s] 40 400 5400
comm[GB/s] 20 25 50

comm/band 0.5 0.06 0.009




Thank you!
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