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Part I. Intro



From the textbooks
Classical Electrodynamics

~µ = e
2m

~j

Relativistic Quantum Mechanics

~µ = g e
2m ~s with g = 2

Quantum Electrodynamics

a ≡ g−2
2 = α

2π

Experiment

ae = 0.00115965218091(26)

aµ = 0.00116592091(63)

aτ 6 0.013



g-2 measurement principle

Feed fast muons into a magnetic field!

m d~v
dt = e ~v × ~B + . . .

m d~s
dt = g

2 e ~s× ~B + . . .

Precession freq ωa = aµ eB
mµ

Muons decay:
µ+ → e+ + νe + ν̄µ

Count positrons:

N(t) = N0e−
t
τ [1 + A sin(ωat +ϕ)]



g-2 experimental summary
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aexp
µ = 11659209.1(6.3)× 10−10

Two new experiments plan to reduce error to 1.6 · 10−10

I Fermilab E989: already taking data, first results end
of 2018, final in 2020

I J-PARC E34: starts data taking in 2020



g-2 from theory

What contributes to atheo
µ ?

Knowns

QED α
π ∼ 10−3

QCD
(
α
π

)2 (mµ
mρ

)2
∼ 10−7 → is it under control?

weak αW
π

(
mµ
mW

)2
∼ 10−9

Unknowns

SUSY
(

mµ
mSUSY

)2
→ e � µ� τ

??? ???



QED contribution [Kinoshita et al ’15]

Diagrams with only photons and leptons.

12672 diagrams at five loops

Automated diagram generation, numerical evaluation of
integrals, only some diagrams known analytically.



QED contribution

Inputs are mµ/me, mµ/mτ and α, α taken from ae:

α−1(ae) = 137.035999069(96) 13 digits precision!

n-loop aQED
µ × 10−10

1 11614097.330(0.008)
2 41321.762(0.010)
3 3014.190(0.000)
4 38.081(0.030)
5 0.448(0.140)

total 11658471.811(0.160)

aexp
µ − aQED

µ = 737.2(6.3)× 10−10



Weak contribution [Gnendiger et al ’15]

1-loop aweak,(1)
µ = 19.480(1)× 10−10

W W

νµ Z H
µ

γ
a) b) c)

2-loop aweak,(2)
µ = −4.12(60)× 10−10

γ Z

f

µ µ

γ

µ
f

γ

γ Z µ
f

γ

Z Z

W
Wf

f ′

µ νµ

γ

W Wf ′

f

µ νµ

γ

H γ
t

µ µ

γ

a) b) c)

d) e) f)

aexp
µ − aQED

µ − aweak
µ = 721.8(6.3)× 10−10



QCD contributions

LO hadron vacuum polarization (LO-HVP, (απ )
2)

µ

γ

had

µ

NLO hadron vacuum polarization (NLO-HVP, (απ )
3)

h e h h h
µ

γ

h

a) b) c) d)

+ +

Hadronic light-by-light (HLbL, (απ )
3)

µ(p)

γ(k) kρ

had + 5 permutations of the qi

µ(p′)

q1µq2ν
q3λ



HVP from e+e− → hadrons [Bouchiat et al ’61]

Πµν(q) =
(
qµqν − gµνq2

)
Π(q2)

Re(q
2
)

Im(q
2
)

4m
π

2

Use a dispersion relation (analiticity)

Π(q2) =
∫∞

4m2
π

ds q2

s(s+q2)
1
π ImΠ(s)

and the optical theorem (unitarity)

ImΠ(s) = −
σ(e+e−→had)

48π2α(s)2/(3s)



HVP from experiments

Use e+e− → had data of CMD, SND, BES, KLOE, BABAR, etc:
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Recent determinations

LO 688.1(4.1) [Jegerlehner ’17]
LO 692.6(3.3) [Davier ’16]
LO 694.9(4.3) [Hagiwara et al ’11]

NLO -9.87(0.09) [Kurz et al ’14]
NNLO 1.24(0.01) [Kurz et al ’14]

aexp
µ − aQED

µ − aweak
µ − aHVP

µ = 37.8(7.1)× 10−10



HLbL estimates

µ(p)

γ(k) kρ

had + 5 permutations of the qi

µ(p′)

q1µq2ν
q3λ

Only O(α3) but very complicated.
Involves Πµνλρ(q1, q2, q3, k) with 47 Lorentz invariants of

which 12 contribute to aµ [Colangelo et al ’14]

Not fully related to experimental observables → model
estimates [Bijnens, Hayakawa, Nyffeler et al] → world average

aHLbL
µ ≈ 10.5(2.6)× 10−10 [Prades et al ’09]

New dispersive approach [Colangelo Lat17] and lattice
[Mainz, RBC/UKQCD] in progress.



A 3÷ 4σ discrepancy

aexp
µ − aQED

µ − aweak
µ − aHVP

µ − aHLbL
µ = 27.3(7.6)× 10−10

-700 -600 -500 -400 -300 -200 -100 0

a
µ
  –  a

µ
    exp ×

 
10

–11

B
N

L
-E

8
2

1
 2

0
0

4

S
M

 p
re

d
ic

ti
o

n
s

M
e

a
s
u

re
m

e
n

t

JN 2009

HLMNT 2011

DHMZ 2011

DHMZ 2017

BNL-E821 (world average)

–301
 
±

 
65

–263
 
±

 
49

–289
 
±

 
49

–268
 
±

 
43

0
 
±

 
63

Discrepancy is about 2× electroweak contribution.



Outlook

Error budget

(7.6) = (6.3)exp(0.2)QED(0.6)weak(3.3)HVP(2.6)HLbL

exp: Fermilab E989 and J-PARC E34 aim for (1.5)exp

HVP and HLbL: lattice QCD with controlled errors

No new physics requires

I 4% larger HVP, ie. aHVP
µ = 720.0(6.8)× 10−10

I 360% larger HLbL, ie. aHLbL
µ = 37.9(7.1)× 10−10

For new physics
assuming central values remain the same

I E989 + same theory errors 6σ

I E989 + HLbL 10% + HVP 0.2% 11σ



Part II. LO-HVP from lattice QCD



aHVP
µ from the lattice [Blum ’02]

γ

γ γ

µ µhad

Πµν(q) =
(
qµqν − gµνq2

)
Π(q2)

Re(q
2
)

Im(q
2
)

4m
π

2

Consider the diagram in Euclidean instead (q0 → −i(qE)0):

aLO-HVP
µ =

(
α
π

)2 ∫∞
0 dq2

E w(q2
E) Π(q

2
E)

I w known function, describes the non-HVP part
I Π(qE) can be obtained from the lattice current-current

correlator
I charge renormalization requires Π(0) = 0



aHVP
µ integral

aµ =
∫

dq2 w(q2)Π(q2)

For small momenta Π ∼ q2, w ∼ 1/q2

Integrand is peaked around q = mµ/2 → Π(q2) has to be
computed precisely for small momenta.
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For small momenta Π(q2) can be nicely approximated by first
few derivatives: slope Π ′(0) - curvature Π ′′(0)



Lattice details

Recipe

1. Measure Πµν(q) =
∑

x eiqx〈jµ(x)jν(0)〉 on the lattice

2. Extract Π from Πµν =
(
q̂µq̂ν − δµνq̂2

)
Π(q2) + . . .

Problems

I non-conserved current requires multiplicative renorm.

I Π(q) is only for discrete momenta → interpolation?
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I Π(0) is not directly accessible → extrapolation??



Moments [HPQCD ’14]

Π(q2) = Π ′(0) · q2 + Π ′′(0) · q4

2 + . . .

Start from continuum, infinite box:∫
dx eiqx〈jµ(x)jν(x)〉 = (qµqν − δµνq2)Π(q2)

and Taylor expand both sides in q. You get

Π ′(0) = 1
24

∫
dt t4C(t), Π ′′(0) = − 1

720

∫
dt t6C(t), . . .

C(t) is zero momentum timelike jj-propagator

On the lattice calculate

Π ′(0) = 1
24

∑T/2
t=−T/2+1 t4C(t), . . .

and use in the Taylor expansion:

I Π(q2) as a continuous function of q2

I renormalized by construction Π(0) = 0

Note: Pade instead of Taylor for improved convergence (first 2 orders suffice!)



Master formula [Bernecker et al ’11, RBC/UKQCD ’14 ’16]

Put back the expansion coefficients into the expansion:

Π(q2) =
∑T/2

t=−T/2+1

[
cos(qt)−1

q2 + t2

2

]
C(t)

and finally into the aµ-integral aµ =
∫

dq2 w(q2)Π(q2)

aHVP
µ =

∑T/2
t=−T/2+1 W (t, mµa)C(t)

a lattice spacing, W is known kinematical function
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Contributions

Decompose the current as

jµ = 2
3uµ − 1

3dµ − 1
3sµ + 2

3cµ

Assuming isospin symmetry the correlator is

〈jj〉 ∼ C(t) = Cud + Cs + Cc + Cdisc

I ud has poor signal for large t and is very sensitive to
finite box size → needs high statistics and tricks

I s “nothing to see here”
I c has large lattice artefacts
I disc SU(3) suppressed (vanishes if ms = mud)



Simulations [1612.02364, 1711.04980]

Landscape

I Nf = 2 + 1 + 1 smeared
staggered

I 15 high statistics
simulations

I bracketing physical
quark masses

I 6 lattice spacings
I L & 6 fm

Techniques

conserved EM current - EigCG - Low Mode Averaging -
All Mode Averaging [Blum et al ’13] - close to 10M/40M

conn/disc measurements



Noise reduction

Noise/signal grows exp[(Mρ − Mπ)t].

Consider upper/lower bounds

See also [Lehner ’15]

Connected I = 1

0 6 Cud(t) 6 Cud(tc)eE2π(t−tc)

Disconnected I = 0

0 6 −Cdisc(t) 6
1
10

Cud(tc)eE2π(t−tc)

For t > tc bounds meet, replace C(t) by average bounds .
Vary tc for systematics.



Disconnected isn’t difficult
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Contrary to earlier expectations

I easy to measure → use LMA and approximate SU3
symmetry [Francis et al ’14]

I small → ∼ 2% instead of 10% [Juttner, DellaMorte ’10]

Also measured charm disconnected, wich is really tiny.



Continuum limits
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I With 6 a’s, have full
control over continuum
limit

I Get good χ2/dof w/
extrapolation linear in a2

and interpolations, linear
in m2

π and m2
K

I Strong continuum
extrapolation for aud

µ due
to taste violations and for
ac
µ due to large mc

I Get continuum systematic
from all results and by
cutting results with
a > 0.134, 0.111, 0.095 fm



Matching to perturbation theory
Restrict integral aµ =

∫
w(q2)Π(q2) to qmax! Consider separation

aµ = a latt
µ + apert

µ + amatch
µ

with

alatt
µ =

∫max

0
w(q2) ·Π(q2)

apert
µ =

∫∞
max

w(q2) · [Π(q2) −Π(q2
max)], amatch

µ =

[∫∞
max

dq2w(q2)

]
·Π(q2

max)

Result is independent of q2
max & 2GeV2 → lattice matches

perturbation theory perfectly, ie. Π(q2 →∞) is under control.



Finite volume effect
Work in fixed physical volume → FV effect cannot be estimated
from simulations. Use estimates now.

Long distance dominated by 2π

FV effects are exponentially suppressed, but can be large.

Recent results

I Leading order XPT [Aubin et al ’16] just the π+π− loop - no
interaction between pions

I Interacting pions [Francis et al ’13] determine energy
levels and matrix elements of 2-pion states in a finite box
[Lellouch-Luscher] from experiment data [Gounaris-Sakurai]

→ “Free theory is smaller by factor 1.5-2.0”

I dedicated FV study with L = 9fm [Izubuchi et al ’18]



Finite volume effect, etc.
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LO XPT

We corrected the results by LO XPT and lack of numerical
evidence we assigned 100% error to this correction.

Isospin breaking

We also corrected results for QED and mu 6= md effects, by
taking the missing effects from the dispersive approach, again
with a conservative error

∆IBaµ = 7.8(5.1)× 10−10



Results
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No new physics

a
µ

LO-HVP
 . 10

10

Consistent with both no new physics and phenomenology.

HPQCD gets 2σ smaller, discrepancy in light contribution.

Error budget:
(2.7) % = (1.1)stat(1.1)cont(0.8)scale(1.9)FV(0.7)QED %

Moments [1612.02364], ae and aτ have also been determined



Outlook - going for 0.2%

I QED compute QED and mu 6= md effects - no high precision is
needed, but there are many diagrams [ETM ’17, RBC/UKQCD
’17 ’18]

I a[fm] to reach 0.2% error from the scale, need . 0.1% error on
the scale, since [Π ′] = GeV−2 - current w0 determinations have
∼ 0.5%

I FV understand and control FV effects much better, eg. dedicated
studies [Izubuchi et al ’18]

I noise currently ∼1.0%, increase statistics



Super(?)computers

JUQUEEN will be shutdown completely no
later than Tuesday 22nd of May.

IBM BGQ Intel KNL Nvidia 6× Volta
bandwidth[GB/s] 40 400 5400
comm[GB/s] 20 25 50
comm/band 0.5 0.06 0.009



Thank you!
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