g-2 from Budapest-Marseille-Wuppertal

Kalman Szabo Forschungszentrum Jülich & University of Wuppertal

Borsanyi, Fodor, Hoelbling, Kawanai, Krieg, Lellouch, Malak,

Miura, Szabo, Torrero, Toth:

[1612.02364, PhysRevD] Slope and curvature ...

[1711.04980, PhysRevLett] ... magnetic moments of leptons ...

Part I. Intro

From the textbooks Classical Electrodynamics

Relativistic Quantum Mechanics

$$\vec{\mu} = g \; rac{e}{2m} \; \vec{s} \; ext{with} \; g = 2$$

Quantum Electrodynamics

$$a \equiv rac{g-2}{2} = rac{lpha}{2\pi}$$

Experiment

$$\begin{split} a_e &= 0.00115965218091(26) \\ a_\mu &= 0.00116592091(63) \\ a_\tau &\leqslant 0.013 \end{split}$$

g-2 measurement principle

Feed fast muons into a magnetic field!

$$mrac{dec v}{dt} = e \ ec v imes ec B + \dots$$

 $mrac{dec s}{dt} = rac{g}{2} \ e \ ec s imes ec B + \dots$

Precession freq $\omega_a = a_\mu \frac{eB}{m_\mu}$

Two new experiments plan to reduce error to $1.6 \cdot 10^{-10}$

- Fermilab E989: already taking data, first results end of 2018, final in 2020
- ▶ J-PARC E34: starts data taking in 2020

g-2 from theory

What contributes to a_{μ}^{theo} ?

Knowns

QED
$$\frac{\alpha}{\pi} \sim 10^{-3}$$

$$\text{QCD} \qquad \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{m_{\rho}}\right)^2 \sim 10^{-7}$$

 \rightarrow is it under control?

weak
$$\frac{\alpha_W}{\pi} \left(\frac{m_\mu}{m_W}\right)^2 \sim 10^{-9}$$

Unknowns

$$\mathrm{SUSY} ~~ \left(rac{m_\mu}{m_{\mathrm{SUSY}}}
ight)^2 ~~
ightarrow e \ll \mu \ll au$$

??? ???

QED contribution [Kinoshita et al '15]

Diagrams with only photons and leptons.

12672 diagrams at five loops

ക്കി <u>ത</u> തെ ത \bigcirc ത്തിന്റെ

Automated diagram generation, numerical evaluation of integrals, only some diagrams known analytically.

QED contribution

Inputs are m_{μ}/m_e , m_{μ}/m_{τ} and α , α taken from a_e :

 $\alpha^{-1}(a_e) = 137.035999069(96)$ 13 digits precision!

n-loop	$a_{\mu}^{ m QED} imes 10^{-10}$
1	11614097.330(0.008)
2	41321.762(0.010)
3	3014.190(0.000)
4	38.081(0.030)
5	0.448(0.140)
total	11658471.811(0.160)

$$a_{\mu}^{exp} - a_{\mu}^{QED} = 737.2(6.3) \times 10^{-10}$$

Weak contribution [Gnendiger et al '15]

 $a_{\mu}^{exp} - a_{\mu}^{QED} - a_{\mu}^{weak} = 721.8(6.3) \times 10^{-10}$

QCD contributions

LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

Hadronic light-by-light (HLbL, $(\frac{\alpha}{\pi})^3$)

HVP from $e^+e^-
ightarrow$ [Bouchiat et al '61]

Use a dispersion relation (analiticity)

$$\Pi(q^2)=\int_{4m_\pi^2}^\infty ds\; rac{q^2}{s(s+q^2)}rac{1}{\pi}{
m Im}\Pi(s)$$

and the optical theorem (unitarity)

Im[
$$\frown$$
] \propto | \frown hadrons |²
Im $\Pi(s) = -\frac{\sigma(e^+e^- \rightarrow had)}{48\pi^2 \alpha(s)^2/(3s)}$

HVP from experiments

Use $e^+e^- \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, etc:

Recent determinations

LO	688.1(4.1)	[Jegerlehner '17]
LO	692.6(3.3)	[Davier '16]
LO	694.9(4.3)	[Hagiwara et al '11]
NLO	-9.87(0.09)	[Kurz et al '14]
NNLO	1.24(0.01)	[Kurz et al '14]

$$a_{\mu}^{exp} - a_{\mu}^{QED} - a_{\mu}^{weak} - a_{\mu}^{HVP} = 37.8(7.1) imes 10^{-10}$$

HLbL estimates

Only $O(\alpha^3)$ but very complicated. Involves $\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_3, k)$ with 47 Lorentz invariants of which 12 contribute to a_{μ} [Colangelo et al '14]

Not fully related to experimental observables \rightarrow model estimates [Bijnens, Hayakawa, Nyffeler et al] \rightarrow world average

 $a_{\mu}^{HLbL} pprox 10.5(2.6) imes 10^{-10}$ [Prades et al '09]

New dispersive approach [Colangelo Lat17] and lattice [Mainz, RBC/UKQCD] in progress.

A $3 \div 4\sigma$ discrepancy

Discrepancy is about $2 \times$ electroweak contribution.

Outlook

Error budget

 $(7.6) = (6.3)_{exp}(0.2)_{QED}(0.6)_{weak}(3.3)_{HVP}(2.6)_{HLbL}$

 $\ensuremath{\textit{exp:}}$ Fermilab E989 and J-PARC E34 aim for $(1.5)_{exp}$

HVP and HLbL: lattice QCD with controlled errors

No new physics requires

- 4% larger HVP, ie. $a_{\mu}^{\text{HVP}} = 720.0(6.8) \times 10^{-10}$
- ► 360% larger HLbL, ie. $a_{\mu}^{\text{HLbL}} = 37.9(7.1) \times 10^{-10}$

For new physics

assuming central values remain the same

• E989 + same theory errors 6σ

► E989 + HLbL 10% + HVP 0.2% 11σ

Part II. LO-HVP from lattice QCD

Consider the diagram in Euclidean instead ($q_0 \rightarrow -i(q_E)_0$):

$$a_{\mu}^{ ext{LO-HVP}} = \left(rac{lpha}{\pi}
ight)^2 \int_0^\infty dq_E^2 \,\, w(q_E^2) \,\, \Pi(q_E^2)$$

- w known function, describes the non-HVP part
- ► $\Pi(q_E)$ can be obtained from the lattice current-current correlator
- charge renormalization requires $\Pi(0) = 0$

For small momenta $\Pi \sim q^2$, $w \sim 1/q^2$

Integrand is peaked around $q = m_{\mu}/2 \rightarrow \Pi(q^2)$ has to be computed precisely for small momenta.

For small momenta $\Pi(q^2)$ can be nicely approximated by first few derivatives: slope $\Pi'(0)$ - curvature $\Pi''(0)$

Lattice details

Recipe

1. Measure $\Pi_{\mu
u}(q) = \sum_x e^{iqx} \langle j_\mu(x) j_
u(0) \rangle$ on the lattice

2. Extract Π from $\Pi_{\mu\nu} = \left(\hat{q}_{\mu}\hat{q}_{\nu} - \delta_{\mu\nu}\hat{q}^2\right)\Pi(q^2) + \ldots$

Problems

- ▶ non-conserved current requires multiplicative renorm.
- $\Pi(q)$ is only for discrete momenta \rightarrow interpolation?

► $\Pi(0)$ is not directly accessible \rightarrow extrapolation??

Moments [HPQCD '14]

$$\Pi(q^2) = \Pi'(0) \cdot q^2 + \Pi''(0) \cdot \frac{q^4}{2} + \ldots$$

Start from continuum, infinite box:

$$\int dx \; e^{iqx} \langle j_\mu(x) j_
u(x)
angle = (q_\mu q_
u - \delta_{\mu
u} q^2) \Pi(q^2)$$

and Taylor expand both sides in q. You get

$$\Pi'(0) = \frac{1}{24} \int dt \ t^4 C(t), \quad \Pi''(0) = -\frac{1}{720} \int dt \ t^6 C(t), \quad \dots$$

C(t) is zero momentum timelike jj-propagator

On the lattice calculate

$$\Pi'(0) = \frac{1}{24} \sum_{t=-T/2+1}^{T/2} t^4 C(t), \ \dots$$

and use in the Taylor expansion:

- ▶ $\Pi(q^2)$ as a continuous function of q^2
- renormalized by construction $\Pi(0) = 0$

Note: Pade instead of Taylor for improved convergence (first 2 orders suffice!)

Master formula [Bernecker et al '11, RBC/UKQCD '14 '16]

Put back the expansion coefficients into the expansion:

$$\Pi(q^2) = \sum_{t=-T/2+1}^{T/2} \left[\frac{\cos(qt)-1}{q^2} + \frac{t^2}{2} \right] C(t)$$

and finally into the a_{μ} -integral $a_{\mu} = \int dq^2 w(q^2) \Pi(q^2)$

$$a_{\mu}^{\mathrm{HVP}} = \sum_{t=-T/2+1}^{T/2} W(t,m_{\mu}a) C(t)$$

a lattice spacing, W is known kinematical function

Contributions

Decompose the current as

$$j_{\mu} = \frac{2}{3}u_{\mu} - \frac{1}{3}d_{\mu} - \frac{1}{3}s_{\mu} + \frac{2}{3}c_{\mu}$$

Assuming isospin symmetry the correlator is

$$\langle jj\rangle \sim C(t) = C^{ud} + C^{s} + C^{c} + C^{disc}$$

- ► ud has poor signal for large t and is very sensitive to finite box size → needs high statistics and tricks
- **s** "nothing to see here"
- ► c has large lattice artefacts
- **disc** SU(3) suppressed (vanishes if $m_s = m_{ud}$)

Simulations [1612.02364, 1711.04980] Landscape

- ► $N_f = 2 + 1 + 1$ smeared staggered
- 15 high statistics simulations
- bracketing physical quark masses
- ► 6 lattice spacings

• $L \gtrsim 6 \text{ fm}$

Techniques

conserved EM current - EigCG - Low Mode Averaging -All Mode Averaging [Blum et al '13] - close to 10M/40M conn/disc measurements

Noise reduction

Noise/signal grows $\exp[(M_{\rho} - M_{\pi})t]$.

For $t \ge t_c$ bounds meet, replace C(t) by average bounds. Vary t_c for systematics.

Disconnected isn't difficult

Contrary to earlier expectations

- ► easy to measure → use LMA and approximate SU3 symmetry [Francis et al '14]
- ▶ small $\rightarrow \sim 2\%$ instead of 10% [Juttner, DellaMorte '10]

Also measured charm disconnected, wich is really tiny.

Continuum limits

- ► With 6 a's, have full control over continuum limit
- Get good χ²/dof w/ extrapolation linear in a² and interpolations, linear in m²_π and m²_K
- Strong continuum extrapolation for a^{ud}_µ due to taste violations and for a^c_µ due to large m_c
- Get continuum systematic from all results and by cutting results with $a \ge 0.134, 0.111, 0.095 \text{ fm}$

Matching to perturbation theory

Restrict integral $a_{\mu} = \int w(q^2) \Pi(q^2)$ to $q_{max}!$ Consider separation

$$a_\mu = a_\mu^{ ext{latt}} + a_\mu^{ ext{pert}} + a_\mu^{ ext{match}}$$

with

$$a_{\mu}^{\text{latt}} = \int_{0}^{\max} w(q^2) \cdot \Pi(q^2)$$
$$a_{\mu}^{\text{pert}} = \int_{\max}^{\infty} w(q^2) \cdot [\Pi(q^2) - \Pi(q_{\max}^2)], \qquad a_{\mu}^{\text{match}} = \left[\int_{\max}^{\infty} dq^2 w(q^2) \right] \cdot \Pi(q_{\max}^2)$$

Result is independent of $q_{\text{max}}^2 \gtrsim 2 \text{GeV}^2 \rightarrow \text{lattice matches}$ perturbation theory perfectly, ie. $\Pi(q^2 \rightarrow \infty)$ is under control.

Finite volume effect

Work in fixed physical volume \rightarrow FV effect cannot be estimated from simulations. Use estimates now.

Long distance dominated by 2π

FV effects are exponentially suppressed, but can be large.

Recent results

- ► **Leading order XPT** [Aubin et al '16] just the $\pi^+\pi^-$ loop no interaction between pions
- ► Interacting pions [Francis et al '13] determine energy levels and matrix elements of 2-pion states in a finite box [Lellouch-Luscher] from experiment data [Gounaris-Sakurai]

 \rightarrow "Free theory is smaller by factor 1.5-2.0"

• **dedicated FV study** with L = 9fm [Izubuchi et al '18]

Finite volume effect, etc.

We corrected the results by LO XPT and lack of numerical evidence we assigned 100% error to this correction.

Isospin breaking

We also corrected results for QED and $m_u \neq m_d$ effects, by taking the missing effects from the dispersive approach, again with a conservative error

$$\Delta_{I\!B} a_{\mu} = 7.8(5.1) imes 10^{-10}$$

Consistent with both no new physics and phenomenology.

HPQCD gets 2σ smaller, discrepancy in light contribution.

Error budget:

 $(2.7) \ \% = (1.1)_{stat}(1.1)_{cont}(0.8)_{scale}(1.9)_{FV}(0.7)_{QED} \ \%$

Moments [1612.02364], a_e and a_{τ} have also been determined

Outlook - going for 0.2%

- ▶ **GED** compute QED and m_u ≠ m_d effects no high precision is needed, but there are many diagrams [ETM '17, RBC/UKQCD '17 '18]
- ▶ **a[fm]** to reach 0.2% error from the scale, need $\leq 0.1\%$ error on the scale, since $[\Pi'] = \text{GeV}^{-2}$ current w_0 determinations have $\sim 0.5\%$
- ► **FV** understand and control FV effects much better, eg. dedicated studies [Izubuchi et al '18]
- ▶ **noise** currently ~1.0%, increase statistics

Super(?)computers

JUQUEEN will be shutdown completely no later than Tuesday 22nd of May.

	IBM BGQ	Intel KNL	Nvidia $6 \times$ Volta
bandwidth[GB/s]	40	400	5400
comm[GB/s]	20	25	50
comm/band	0.5	0.06	0.009

Thank you!