QED correction to Decay Rates

INFN

Istituto Nazionale di Fisica Nucleare

Francesco Sanfilippo, INFN, Roma Tre
"Frontiers in Lattice Quantum Field Theory", Madrid, 22 May 2018

Outline

Introduction

- Motivation to include QED in QCD
- Why lattice QCD+QED
- If Lattice QCD is though, including QED is even harder!
- Include QED: the perturbative approach

Outline

Introduction

- Motivation to include QED in QCD
- Why lattice QCD+QED
- If Lattice QCD is though, including QED is even harder!
- Include QED: the perturbative approach

Phenomenology

- Hadron Masses
- Decay rates
(1) In pure QCD (infrared finite)
(2) Ratio of decay rates (infrared finite)
(3) Single decay rate (infrared troubled)
- $g-2$: QED contribution to hadronic vacuum polarization

Outline

Introduction

- Motivation to include QED in QCD
- Why lattice QCD+QED
- If Lattice QCD is though, including QED is even harder!
- Include QED: the perturbative approach

Phenomenology

- Hadron Masses
- Decay rates
(1) In pure QCD (infrared finite)
(2) Ratio of decay rates (infrared finite)
(3) Single decay rate (infrared troubled)
- $g-2$: QED contribution to hadronic vacuum polarization

Some final words

- Work in progress
- Future developments

Dealing with photons

$$
\text { Hard photons - } E \sim \text { many } \mathrm{GeV}
$$

Perturbation theory

Ultrasoft photons - $E \sim$ few MeV

Point-like hadrons

Dealing with photons

Perturbation theory

Ultrasoft photons - $E \sim$ few MeV

Point-like hadrons

What to do with soft photons?

...Here we come to the rescue...

Example: CKM matrix elements from semileptonic and leptonic K and π decays

Leptonic

Hadronic matrix elements, lattice results

$$
\begin{aligned}
f_{+}^{K \pi}(0) & =0.956(8) \\
f_{K} / f_{\pi} & =1.193(5)
\end{aligned} \text { in the isospin symmetric limit. }
$$

Example: CKM matrix elements from semileptonic and leptonic K and π decays

Hadronic matrix elements, lattice results

$$
\begin{aligned}
f_{+}^{K \pi}(0) & =0.956(8) \\
f_{K} / f_{\pi} & =1.193(5)
\end{aligned} \text { in the isospin symmetric limit. }
$$

\rightarrow At current precision ($0.5-1 \%$), IB corrections not negligible \leftarrow

Example: CKM matrix elements from semileptonic and leptonic K and π decays

Semileptonic

Leptonic

Hadronic matrix elements, lattice results

$$
\begin{aligned}
f_{+}^{K \pi}(0) & =0.956(8) \\
f_{K} / f_{\pi} & =1.193(5)
\end{aligned} \text { in the isospin symmetric limit. }
$$

\rightarrow At current precision ($0.5-1 \%$), IB corrections not negligible \leftarrow

Indeed ChPT estimates of these effects are:

$$
\left(f_{+}^{K^{+} \pi^{0}} / f_{+}^{K^{-}} \pi^{+}-1\right)^{Q C D}=2.9(4) \%
$$

A. Kastner, H. Neufeld (EPJ C57, 2008)

$$
\left(\frac{f_{K^{+}} / f_{\pi^{+}}}{f_{K} / f_{\pi}}-1\right)^{Q C D}=-0.22(6) \%
$$

V. Cirigliano, H. Neufeld (Phys.Lett.B700, 2011)

More complications from QED

The target: Fully unquenched QCD + QED

$$
\mathcal{L}=\sum_{i} \bar{\psi}_{i}\left[m_{i}-i \not D_{i}\right] \psi_{i}+\mathcal{L}_{\text {gluons }}+\mathcal{L}_{\text {photon }}, \quad D_{i, \mu}=\partial_{\mu}+i g A_{\mu}^{a} T^{a}+i e_{i} A_{\mu}
$$

Simulate each quark with its physical mass and charge

More complications from QED

The target: Fully unquenched QCD + QED

$$
\mathcal{L}=\sum_{i} \bar{\psi}_{i}\left[m_{i}-i \not D_{i}\right] \psi_{i}+\mathcal{L}_{\text {gluons }}+\mathcal{L}_{\text {photon }}, \quad D_{i, \mu}=\partial_{\mu}+i g A_{\mu}^{a} T^{a}+i e_{i} A_{\mu}
$$

Simulate each quark with its physical mass and charge

Introducing photons

Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator: $\int \frac{\delta_{\mu \nu}}{k^{2}} d^{4} k \rightarrow \sum_{k} \frac{\delta_{\mu \nu}}{k^{2}}$ massive photons, removal of zero mode, C^{*} boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

More complications from QED

The target: Fully unquenched QCD + QED

$$
\mathcal{L}=\sum_{i} \bar{\psi}_{i}\left[m_{i}-i \not D_{i}\right] \psi_{i}+\mathcal{L}_{\text {gluons }}+\mathcal{L}_{\text {photon }}, \quad D_{i, \mu}=\partial_{\mu}+i g A_{\mu}^{a} T^{a}+i e_{i} A_{\mu}
$$

Simulate each quark with its physical mass and charge

Introducing photons

Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator: $\int \frac{\delta_{\mu \nu}}{k^{2}} d^{4} k \rightarrow \sum_{k} \frac{\delta_{\mu \nu}}{k^{2}}$ massive photons, removal of zero mode, C^{*} boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

Practical problem

- Traditionally, gauge configuration datasets include only gluons
- Dedicated simulations with huge cost
- Even greater cost due to additional zero modes.

The Roman approach - RM123 collaboration

Pioneering papers

- "Isospin breaking effects due to the up-down mass difference in Lattice QCD", [JHEP 1204 (2012)]
- "Leading isospin breaking effects on the lattice", [PRD87 (2013)]

The Roman approach - RM123 collaboration

Pioneering papers

- "Isospin breaking effects due to the up-down mass difference in Lattice QCD", [JHEP 1204 (2012)]
- "Leading isospin breaking effects on the lattice", [PRD87 (2013)]

3) Roma Tre

D. Giusti, V.Lubicz, S.Romiti, F.S, S.Simula, C.Tarantino

1) La Sapienza
M.Di Carlo, G.Martinelli
2) Tor Vergata
G.deDivitiis,
P.Dimopoulos,
R.Frezzotti,
N.Tantalo
\star Guest Star from Southampton University: C.T.Sachrajda

The Roman approach - RM123 collaboration

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L}=\mathcal{L}_{\text {Iso symm }}+\mathcal{L}_{\text {Isobreak }}$

$$
\mathcal{L}_{\text {Isobreak }}=e \mathcal{L}_{Q E D}+\delta m \mathcal{L}_{\text {mass }}, \quad e^{2}=\frac{4 \pi}{137.04}, \quad \delta m=\left(m_{d}-m_{u}\right) / 2
$$

QED + isospin breaking pieces are treated as a perturbation.

The Roman approach - RM123 collaboration

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L}=\mathcal{L}_{\text {Iso symm }}+\mathcal{L}_{\text {Isobreak }}$

$$
\begin{gathered}
\mathcal{L}_{\text {Iso break }}=e \mathcal{L}_{Q E D}+\delta m \mathcal{L}_{\text {mass }}, \quad e^{2}=\frac{4 \pi}{137.04}, \quad \delta m=\left(m_{d}-m_{u}\right) / 2 \\
\text { QED }+ \text { isospin breaking pieces are treated as a perturbation } .
\end{gathered}
$$

Pros

Cleaner: Factorize small parameters e and δm, introduce QED only when needed Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated ones are general purpose).

The Roman approach - RM123 collaboration

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L}=\mathcal{L}_{\text {Iso symm }}+\mathcal{L}_{\text {Iso break }}$

$$
\begin{gathered}
\mathcal{L}_{\text {Iso break }}=e \mathcal{L}_{Q E D}+\delta m \mathcal{L}_{\text {mass }}, \quad e^{2}=\frac{4 \pi}{137.04}, \quad \delta m=\left(m_{d}-m_{u}\right) / 2 \\
\text { QED }+ \text { isospin breaking pieces are treated as a perturbation } .
\end{gathered}
$$

Pros

Cleaner: Factorize small parameters e and δm, introduce QED only when needed
Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated ones are general purpose).

Cons

- More vertex and correlations functions to be computed
- Corrections to be computed separately for each observable
- Including charge effects in the sea is costly (fermionically disconnected diagrams).

The Roman approach - RM123 collaboration

Perturbative expansion

Work on top of the isospin symmetric theory $\mathcal{L}=\mathcal{L}_{\text {Isosymm }}+\mathcal{L}_{\text {Isobreak }}$

$$
\begin{gathered}
\mathcal{L}_{\text {Iso break }}=e \mathcal{L}_{Q E D}+\delta m \mathcal{L}_{\text {mass }}, \quad e^{2}=\frac{4 \pi}{137.04}, \quad \delta m=\left(m_{d}-m_{u}\right) / 2 \\
\text { QED }+ \text { isospin breaking pieces are treated as a perturbation } .
\end{gathered}
$$

Pros

Cleaner: Factorize small parameters e and δm, introduce QED only when needed
Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated ones are general purpose).

Cons

- More vertex and correlations functions to be computed
- Corrections to be computed separately for each observable
- Including charge effects in the sea is costly (fermionically disconnected diagrams).
\rightarrow Only method to include QED in matrix elements (is it? cfr. backup slides)

What to do with zero mode?

What to do with zero mode?

$$
\int \frac{\delta_{\mu \nu}}{k^{2}} d^{4} k \rightarrow \sum_{k} \frac{\delta_{\mu \nu}}{k^{2}}
$$

Give a mass to the photon: $\frac{\delta_{\mu \nu}}{k^{2}} \rightarrow \frac{\delta_{\mu \nu}}{k^{2}+m^{2}}$
\checkmark pole shifted to imaginary momentum, not a problem anymore X need to extrapolate $m \rightarrow 0$.

What to do with zero mode?

$$
\int \frac{\delta_{\mu \nu}}{k^{2}} d^{4} k \rightarrow \sum_{k} \frac{\delta_{\mu \nu}}{k^{2}}
$$

Give a mass to the photon: $\frac{\delta_{\mu \nu}}{k^{2}} \rightarrow \frac{\delta_{\mu \nu}}{k^{2}+m^{2}}$
\checkmark pole shifted to imaginary momentum, not a problem anymore
X need to extrapolate $m \rightarrow 0$.

Remove "some" zero modes

4D zero mode only: $\sum_{k} \rightarrow \sum_{k \neq 0}$
\checkmark pole removed, irrelevant when $V \rightarrow \infty$ X nonlocal constraint, T / L^{3} divergence \sim not tragic when working at fixed T / L.

3D zero modes: $\sum_{k} \rightarrow \sum_{k_{0} \neq 0}$
\checkmark no divergence anymore
\boldsymbol{X} still nonlocal constraint
\sim renormalizable at $\mathcal{O}\left(\alpha_{Q E D}\right)$?

What to do with zero mode?

$$
\int \frac{\delta_{\mu \nu}}{k^{2}} d^{4} k \rightarrow \sum_{k} \frac{\delta_{\mu \nu}}{k^{2}}
$$

Give a mass to the photon: $\frac{\delta_{\mu \nu}}{k^{2}} \rightarrow \frac{\delta_{\mu \nu}}{k^{2}+m^{2}}$
\checkmark pole shifted to imaginary momentum, not a problem anymore
X need to extrapolate $m \rightarrow 0$.

Remove "some" zero modes

4D zero mode only: $\sum_{k} \rightarrow \sum_{k \neq 0}$
\checkmark pole removed, irrelevant when $V \rightarrow \infty$ \boldsymbol{X} nonlocal constraint, T / L^{3} divergence \sim not tragic when working at fixed T / L.

3D zero modes: $\sum_{k} \rightarrow \sum_{k_{0} \neq 0}$
\checkmark no divergence anymore
\boldsymbol{X} still nonlocal constraint
\sim renormalizable at $\mathcal{O}\left(\alpha_{Q E D}\right)$?

Use C^{*} Boundary conditions

\checkmark local
X needs dedicated simulations
\sim flavor violation across boundaries.

1) The perturbative expansion in δm

Split mass lagrangian in two contributions:

$$
\mathcal{L}_{\text {mass }}=\underbrace{\left(\frac{m_{d}+m_{u}}{2}\right)}_{m_{u d}}(\bar{u} u+\bar{d} d)-\underbrace{\left(\frac{m_{d}-m_{u}}{2}\right)}_{\delta m}(\bar{u} u-\bar{d} d)
$$

1) The perturbative expansion in δm

Split mass lagrangian in two contributions:

$$
\mathcal{L}_{\text {mass }}=\underbrace{\left(\frac{m_{d}+m_{u}}{2}\right)}_{m_{u d}}(\bar{u} u+\bar{d} d)-\underbrace{\left(\frac{m_{d}-m_{u}}{2}\right)}_{\delta m}(\bar{u} u-\bar{d} d)
$$

Split action in two parts:

$$
S=S_{0}-\delta m S_{m}, \quad \begin{cases}S_{0} & \text { isospin simmetric action } \\ S_{m} & \text { perturbation }=\sum_{x}(\bar{u} u-\bar{d} d)\end{cases}
$$

1) The perturbative expansion in δm

Split mass lagrangian in two contributions:

$$
\mathcal{L}_{\text {mass }}=\underbrace{\left(\frac{m_{d}+m_{u}}{2}\right)}_{m_{u d}}(\bar{u} u+\bar{d} d)-\underbrace{\left(\frac{m_{d}-m_{u}}{2}\right)}_{\delta m}(\bar{u} u-\bar{d} d)
$$

Split action in two parts:

$$
S=S_{0}-\delta m S_{m}, \quad \begin{cases}S_{0} & \text { isospin simmetric action } \\ S_{m} & \text { perturbation }=\sum_{x}(\bar{u} u-\bar{d} d)\end{cases}
$$

Expand functional integral:

$$
\langle O\rangle=\frac{\int D \psi O e^{-S_{0}+\delta m \hat{S}}}{\int D \psi e^{-S_{0}+\delta m \hat{S}}} \stackrel{1 s t}{\simeq} \frac{\int D \psi O e^{-S_{0}}\left(1+\delta m S_{m}\right)}{\int D \psi e^{-S_{0}}\left(1+\delta m S_{m}\right)} \simeq \frac{\langle O\rangle_{0}+\delta m\left\langle O S_{m}\right\rangle_{0}}{1+\delta m\langle S m\rangle_{0}}
$$

1) The perturbative expansion in δm

Isospin correction determination

Relative correction to an observable O is obtained as:

$$
\frac{\delta\langle O\rangle}{\langle O\rangle_{0}} \equiv \frac{\langle O\rangle-\langle O\rangle_{0}}{\langle O\rangle_{0}} \simeq \delta m \frac{\langle\hat{S} O\rangle_{0}}{\langle O\rangle_{0}}, \quad \hat{S}=\sum_{x}(\bar{u} u-\bar{d} d)
$$

Isospin correction determination

Relative correction to an observable O is obtained as:

$$
\frac{\delta\langle O\rangle}{\langle O\rangle_{0}} \equiv \frac{\langle O\rangle-\langle O\rangle_{0}}{\langle O\rangle_{0}} \simeq \delta m \frac{\langle\hat{S} O\rangle_{0}}{\langle O\rangle_{0}}, \quad \hat{S}=\sum_{x}(\bar{u} u-\bar{d} d)
$$

Predictivity of the method

- A physical observable is needed to fix δm (as for any parameter)
- Then, in principle any observable can be corrected.

1) The perturbative expansion in δm

Isospin correction determination

Relative correction to an observable O is obtained as:

$$
\frac{\delta\langle O\rangle}{\langle O\rangle_{0}} \equiv \frac{\langle O\rangle-\langle O\rangle_{0}}{\langle O\rangle_{0}} \simeq \delta m \frac{\langle\hat{S} O\rangle_{0}}{\langle O\rangle_{0}}, \quad \hat{S}=\sum_{x}(\bar{u} u-\bar{d} d)
$$

Predictivity of the method

- A physical observable is needed to fix δm (as for any parameter)
- Then, in principle any observable can be corrected.

Diagrammatically

2) The perturbative expansion in e^{2}

Keep QCD to all orders and QED to $\mathcal{O}\left(e^{2}\right)$

$$
\langle O\rangle=\frac{1}{\mathcal{Z}} \int D\left[A_{\mu}, U^{Q C D}, \psi, \bar{\psi}\right] O\left(1-e^{2} S_{1}+\mathcal{O}\left(e^{4}\right)\right) \exp \left[-S_{0}\right]
$$

N.B: $\mathcal{O}(e)$ vanishes due to charge symmetry.
2) The perturbative expansion in e^{2}

Keep QCD to all orders and QED to $\mathcal{O}\left(e^{2}\right)$

$$
\langle O\rangle=\frac{1}{\mathcal{Z}} \int D\left[A_{\mu}, U^{Q C D}, \psi, \bar{\psi}\right] O\left(1-e^{2} S_{1}+\mathcal{O}\left(e^{4}\right)\right) \exp \left[-S_{0}\right]
$$

N.B: $\mathcal{O}(e)$ vanishes due to charge symmetry.

Which on the lattice means...

$$
S_{1}=\underbrace{\left[\int d x V_{\mu}(x) A_{\mu}(x)\right]^{2}}_{\frac{x}{\xi}}+\underbrace{\int d x T_{\mu}(x) A_{\mu}^{2}(x)}_{\text {Nind }_{n}^{x} w_{m}^{x}}
$$

- V^{2} : Two photon-fermion -fermion vertices (as in the continuum)
- T : One photon-photon-fermion-fermion vertex (tadpole: lattice special).

The case of the pion

Basic correlation function

$$
C(t)=\sum_{\vec{x}}\left\langle P(\vec{x}, t) P^{\dagger}(0)\right\rangle_{Q C D+Q E D}, \quad P=\bar{\psi} \gamma_{5} \psi
$$

The case of the pion

Basic correlation function

$$
C(t)=\sum_{\vec{x}}\left\langle P(\vec{x}, t) P^{\dagger}(0)\right\rangle_{Q C D+Q E D}, \quad P=\bar{\psi} \gamma_{5} \psi
$$

Functional integral

$$
\begin{gathered}
C(t)=C_{0}(t)+C_{1}(t)= \\
\left\langle P(\vec{x}, t) P^{\dagger}(0)\right\rangle_{Q C D}-e^{2}\left\langle P(\vec{x}, t) \sum_{y} S_{1}(y) P^{\dagger}(0)\right\rangle_{Q C D}
\end{gathered}
$$

Now take all Wick contractions...

Diagrams

Fermionically connected - easy part (so to say)

(gluons not drawn, connecting fermion lines in all possible ways)

Diagrams

Fermionically connected - easy part (so to say)

(gluons not drawn, connecting fermion lines in all possible ways)
Disconnected - various degree of nastiness - work is in progress to include

"blinking"

"laughing"

Diagrams

Fermionically connected - easy part (so to say)

(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

"blinking"

"laughing"
" Disconnected isn't difficult" [K.Szabo]

Hadron masses

Infrared safe

- Hadron masses are finite quantities (after that the action is properly renormalized)
- True without and with QED.

Hadron masses

Infrared safe

- Hadron masses are finite quantities (after that the action is properly renormalized)
- True without and with QED.

Computation

- Two-point correlation functions projected to zero momentum
- Large euclidean time behaviour (see next slide).

Hadron masses

Infrared safe

- Hadron masses are finite quantities (after that the action is properly renormalized)
- True without and with QED.

Computation

- Two-point correlation functions projected to zero momentum
- Large euclidean time behaviour (see next slide).

Other collaborations, other approaches

- FNAL/MILC, BMW, QCDSF/UKQCD: fully dynamical simulation of QCD+QED
- RBC/UKQCD: comparison of perturbative and all-order approach.

Pseudoscalar meson 2pts. correlation function (no QED)

Hadron masses at $\mathcal{O}\left(e^{2}\right)$

Some results, meson mass (perturbative expansion)

RM123 coll., "Leading isospin-breaking corrections to pion, K and D mesons', PRD95 (2017)

Some results, baryons (direct simulation)

BMW coll.: "Ab initio calculation of the neutron-proton mass difference", Science 347 (2015)

$$
g_{\mu-2}
$$

Infrared safe

- Neutral current
- True without and with QED.

$$
g_{\mu-2}
$$

Infrared safe

- Neutral current
- True without and with QED.

Computation of Strange and Charm contributions

- Moments method (cfr. yesterday's talk by K.Szabo)
- QED corrections negligible
- Now it's the turn of the light channel QED correction...

$g_{\mu}-2$ QED corrections to light channel (PRELIMINARY)

In line with dispersive approach estimate (see K.Szabo, yesterday's talk)

Matrix elements

More problems

- In general the amplitudes, are infrared divergent
- On the lattice, a natural infrared cutoff is provided by the finite volume
- But physically, only combinations of Real + Virtual contribution is finite.

Matrix elements

More problems

- In general the amplitudes, are infrared divergent
- On the lattice, a natural infrared cutoff is provided by the finite volume
- But physically, only combinations of Real + Virtual contribution is finite.

To be specific

- We consider the leptonic decay of a charged pion
- The method is general

Matrix elements

More problems

- In general the amplitudes, are infrared divergent
- On the lattice, a natural infrared cutoff is provided by the finite volume
- But physically, only combinations of Real + Virtual contribution is finite.

To be specific

- We consider the leptonic decay of a charged pion
- The method is general

Nobody has gone there before!

$$
x^{2} x-x-3
$$

Leptonic decays of mesons (at tree level in QED: $e=0$)

Full process
 Eff. weak hamiltonian
 QCD side

Two point correlation functions

Pion 2pts. correlation function
$\Gamma_{\pi \rightarrow \ell \bar{\nu}}=\underbrace{\left|V_{x y}\right|^{2}}_{\text {CKM }} \underbrace{\mathcal{K}\left(m_{\ell}, m_{M}\right)}_{\text {kinematics }}|\underbrace{f_{\pi}}_{\text {dec. constant }}|^{2}$

$$
f_{\pi}=\frac{Z_{A}}{m_{\pi}}=\frac{\langle 0| A_{0}|\pi\rangle}{m_{\pi}}
$$

Z: coupling of current inducing decay
From lattice, 2 point correlation functions:

$$
C(\tau)=\left\langle O_{A_{0}}^{\dagger}(\tau) O_{P}(0)\right\rangle, O=\bar{\psi} \Gamma \psi
$$

Leptonic decays of mesons (with QED)

Zero photons in the final state, $\mathcal{O}\left(e^{2}\right)$

$$
\begin{gathered}
\Gamma_{\pi^{+} \rightarrow e^{+} \nu}^{0 p h}= \\
\left|A^{0}\right|^{2}+2 e^{2}\left|A^{0} A^{1}\right|+\mathcal{O}\left(e^{4}\right)
\end{gathered}
$$

$$
A_{0}=
$$

IR DIVERGENT Sod

Leptonic decays of mesons (with QED)

Zero photons in the final state, $\mathcal{O}\left(e^{2}\right)$

$$
\begin{gathered}
\Gamma_{\pi^{+} \rightarrow e^{+} \nu}^{0 p h}= \\
\left|A^{0}\right|^{2}+2 e^{2}\left|A^{0} A^{1}\right|+\mathcal{O}\left(e^{4}\right)
\end{gathered}
$$

$$
A_{0}=
$$

IR DIVERGENT Sod

One photon in the final state, $\mathcal{O}\left(e^{2}\right)$

$$
\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu \gamma}^{1 p h}=e^{2}\left|B^{0}\right|^{2}
$$

Again, IR DIVERGENT

Leptonic decays of mesons (with QED)

Zero photons in the final state, $\mathcal{O}\left(e^{2}\right)$

$$
\begin{gathered}
\Gamma_{\pi^{0} h}^{0 p h}+A^{+} \nu \\
\left|A^{0}\right|^{2}+2 e^{2}\left|A^{0} A^{1}\right|+\mathcal{O}\left(e^{4}\right)
\end{gathered} A_{0}=
$$

One photon in the final state, $\mathcal{O}\left(e^{2}\right)$

$$
\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu \gamma}^{1 p h}=e^{2}\left|B^{0}\right|^{2}
$$

$$
B_{0}=
$$

Again, IR DIVERGENT (:)

Solution

$$
\Gamma=\Gamma^{0 p h}+\Gamma^{1 p h} \text { is finite }
$$

The strategy

Virtual photon

- Needs to implement leptons
- Not too demanding numerically.

Virtual photon

- Needs to implement leptons
- Not too demanding numerically.

Real photon

- Slightly more numerically demanding/different process
- For the time being, use point-like approximation and consider $E_{\gamma}<20 \mathrm{MeV}$

Cut-off appropriate experimentally (γ detector sensitivity) and theoretically (π inner structure)
(Work is in progress to compute on the Lattice)

Intermediate step

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\Gamma^{0 p h}}_{\text {lattice in a box }}+\underbrace{\Gamma_{p t}^{1 p h}\left(\Delta E_{\gamma}\right)}_{\text {perturbation theory, massive photon }}
$$

Intermediate step

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\Gamma^{0 p h}}_{\text {lattice in a box }}+\underbrace{\Gamma_{p t}^{1 p h}\left(\Delta E_{\gamma}\right)}_{\text {perturbation theory, massive photon }}
$$

In our strategy

To ensure proper cancellation of IR divergence with different regulator, add and subtract $\Gamma_{p t}^{0}$

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\lim _{L \rightarrow \infty}\left[\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)\right]}_{\text {finite }}+\underbrace{\lim _{m_{\gamma} \rightarrow 0}\left[\Gamma_{p t}^{0}\left(m_{\gamma}\right)+\Gamma_{p t}^{1 p h}\left(m_{\gamma}, \Delta E_{\gamma}\right)\right]}_{\text {finite }}
$$

Intermediate step

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\Gamma^{0 p h}}_{\text {lattice in a box }}+\underbrace{\Gamma_{p t}^{1 p h}\left(\Delta E_{\gamma}\right)}_{\text {perturbation theory, massive photon }}
$$

In our strategy

To ensure proper cancellation of IR divergence with different regulator, add and subtract $\Gamma_{p t}^{0}$

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\lim _{L \rightarrow \infty}\left[\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)\right]}_{\text {finite }}+\underbrace{\lim _{m_{\gamma} \rightarrow 0}\left[\Gamma_{p t}^{0}\left(m_{\gamma}\right)+\Gamma_{p t}^{1 p h}\left(m_{\gamma}, \Delta E_{\gamma}\right)\right]}_{\text {inite }}
$$

$\Gamma_{p t, V}^{0}:$ V.Lubicz et al, Phys.Rev. D95 (2017)

- Perturbation theory with pointlike pion in finite volume $\left(V=L^{4}\right)$
- IR divergences $\propto \log L$ cancel in the difference $\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)$ (fit the remainder)
- Also $1 / L$ corrections are universal and cancel in the difference.

Intermediate step

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\Gamma^{0 p h}}_{\text {lattice in a box }}+\underbrace{\Gamma_{p t}^{1 p h}\left(\Delta E_{\gamma}\right)}_{\text {perturbation theory, massive photon }}
$$

In our strategy

To ensure proper cancellation of IR divergence with different regulator, add and subtract $\Gamma_{p t}^{0}$

$$
\Gamma\left(\Delta E_{\gamma}\right)=\underbrace{\lim _{L \rightarrow \infty}\left[\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)\right]}_{\text {finite }}+\underbrace{\lim _{m_{\gamma} \rightarrow 0}\left[\Gamma_{p t}^{0}\left(m_{\gamma}\right)+\Gamma_{p t}^{1 p h}\left(m_{\gamma}, \Delta E_{\gamma}\right)\right]}_{\text {finite }}
$$

$\Gamma_{p t, V}^{0}$: V.Lubicz et al, Phys.Rev. D95 (2017)

- Perturbation theory with pointlike pion in finite volume $\left(V=L^{4}\right)$
- IR divergences $\propto \log L$ cancel in the difference $\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)$ (fit the remainder)
- Also $1 / L$ corrections are universal and cancel in the difference.
$\lim _{m_{\gamma} \rightarrow 0}\left[\Gamma_{p t}^{0}\left(m_{\gamma}\right)+\Gamma_{p t}^{1 p h}\left(m_{\gamma}, \Delta E_{\gamma}\right)\right]:$ N.Carrasco et al. Phys.Rev. D91 (2015)
- Perturbation theory with pointlike pion with finite photon mass
- Neglected structure dependence: estimated to be small (V.Cirigliano, I.Rosell, JHEP'07) This might not be the case for D or B mesons ($m_{B^{*}}-m_{B} \sim 45 \mathrm{MeV}$)
- Reproduce the the total rate (Berman, PRL 1958, and Kinoshita, PRL 1959).

Matching to the "real world"

Correlation functions computed with bare operators

Needs renormalization: $O_{i}^{\text {ren }}=Z_{i j} O_{j}^{\text {bare }}$

$$
\begin{aligned}
O_{1,2} & =(V \mp A)_{q} \otimes(V-A)_{\ell} \\
O_{3,4} & =(S \mp P)_{q} \otimes(S-P)_{\ell} \\
O_{5} & =(T+\tilde{T})_{q} \otimes(T+\tilde{T})_{\ell}
\end{aligned}
$$

RI-MOM (no QED)

- Compute amputated green functions:

$$
\Lambda_{O}(p)=S^{-1}(p)\left\langle\sum_{x, y} e^{-i p(x-y)} \psi(x) O(0) \psi(y)\right\rangle S^{-1}(p)
$$

- Impose RI-MOM condition at given p^{2} (average all equivalent momenta)

$$
Z_{O}=\frac{Z_{q}}{\operatorname{Tr}\left[\Lambda_{O}(p) \Lambda_{O}^{\text {tree }}(p)^{-1}\right]}
$$

- Chiral extrapolate $m \rightarrow 0$

Matching to the "real world" (continued)

RI-MOM with QED

- As a first step [D.Giusti et al., PRL '18]: RI-MOM for QCD + perturbation theory for QED
- In the coming-soon paper: RI-(S)MOM for QCD + QED

RI-MOM, perturbative expansion: ratio with QCD and QED

$$
\frac{\delta Z_{O}^{Q E D+Q C D}}{\boldsymbol{Z}_{O}^{Q C D} Z_{O}^{Q E D}}=\frac{\delta Z_{q}^{Q C D+Q E D}}{Z_{q}^{Q C D} Z_{q}^{Q E D}}-\frac{\operatorname{Tr}\left[\delta \Lambda_{O}^{Q C D+Q E D}(p) \Lambda_{O}^{\text {tree }}(p)^{-1}\right]}{\operatorname{Tr}\left[\Lambda_{O}^{Q C D}(p) \Lambda_{O}^{\text {tree }}(p)^{-1}\right] \operatorname{Tr}\left[\Lambda_{O}^{Q E D}(p) \Lambda_{O}^{\text {tree }}(p)^{-1}\right]}
$$

Large cancellation of cut-off effects, anomalous dimensions, noise, etc
Measure of the non-factorizability of the renormalization constants.

Vertices (with or without gluons, not drawn)

An example: QED correction to $Z_{1,1}$

Matching to W-reg

Effective theory of Weak interaction

Remember that this computation is done in the Weak interaction effective theorys

$$
H_{e f f}=\frac{1}{\sqrt{2}} \underbrace{G_{F}}_{\text {muon decay }} V_{i j}^{C K M} \underbrace{\left(1+\frac{\alpha}{\pi} \log \frac{M_{Z}}{M_{W}}\right)}_{\text {SM-Fermi theory matching }} \underbrace{O_{1}}_{\mathrm{W}-\mathrm{reg}}
$$

W-reg

Historically, the scheme in which the loop corrections are computed

$$
G_{\mu \nu}(k)=\frac{\delta_{\mu \nu}}{k^{2}} \rightarrow \frac{M_{W}^{2}}{M_{W}^{2}-k^{2}} \frac{\delta_{\mu \nu}}{k^{2}}
$$

cannot be implemented on the lattice $M_{W} \gg \frac{1}{a}$

Status

- Matching from RI-MOM to W-reg computed at 1-loop
- Possibly 2-loops in the future?

Infinite volume extrapolation

Volume dependence

- IR divergences $\propto \log L$ cancel in the difference $\Gamma^{0 p h}(L)-\Gamma_{p t}^{0}(L)$
- $1 / L$ cancel as well (Ward identity)
- Best fit with $1 / L^{2}$ (and $1 / L^{3}$) and extrapolate to $L \rightarrow \infty$

$$
\mathrm{M}_{\pi} \sim 320 \mathrm{MeV}
$$

Let's start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion

$$
\frac{\Gamma_{K^{+} \rightarrow \ell^{+} \nu(\gamma)}}{\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu(\gamma)}}=\frac{\Gamma_{K^{+} \rightarrow \ell^{+}}}{\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu}}\left(1+\delta R_{K \pi}\right), \quad \delta R_{K \pi}=\delta R_{K}-\delta R_{\pi}
$$

- Reduction of noise
- Large cancellation of renormalization correction
- Suppression of finite volume dependence.

Let's start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion

$$
\frac{\Gamma_{K^{+} \rightarrow \ell^{+} \nu(\gamma)}}{\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu(\gamma)}}=\frac{\Gamma_{K^{+} \rightarrow \ell^{+}}}{\Gamma_{\pi^{+} \rightarrow \ell^{+} \nu}}\left(1+\delta R_{K \pi}\right), \quad \delta R_{K \pi}=\delta R_{K}-\delta R_{\pi}
$$

- Reduction of noise
- Large cancellation of renormalization correction
- Suppression of finite volume dependence.

[D.Giusti et al., Phys. Rev. Lett. 120, 072001 (2018)]

Separate Pion and Kaon corrections [PRELIMINARY]

Development

Tomorrow (so to say)

- Finalizing the nonperturbative renormalization with QCD+QED
- Provide final results for δR_{K} and δR_{π}

Development

Tomorrow (so to say)

- Finalizing the nonperturbative renormalization with QCD+QED
- Provide final results for δR_{K} and δR_{π}

The day after tomorrow

- Including fermionic-disconnected diagrams
- Lattice calculation of real emission
- Heavy mesons
- $g-2$ hadronic vacuum polarization $(\mathcal{O}(1 \%) \ldots$ sleep in peace)

Development

Tomorrow (so to say)

- Finalizing the nonperturbative renormalization with QCD+QED
- Provide final results for δR_{K} and δR_{π}

The day after tomorrow

- Including fermionic-disconnected diagrams
- Lattice calculation of real emission
- Heavy mesons
- $g-2$ hadronic vacuum polarization $(\mathcal{O}(1 \%) \ldots$ sleep in peace)

Maybe one day

- Develop a strategy for semileptonic decays (analytic continuation to Minkowsky)
- Corrections to $K \rightarrow \pi \pi$
- . . .

THANK YOU!

Can't we compute this with the "to all order" approach?

Stochastic $=$ Put the photons in the links $U_{x, \mu}^{Q C D} \rightarrow U_{x, \mu}^{Q C D} \exp \left(i e A_{x, \mu}\right)$

What if you don't take $e \rightarrow 0$?

- Higher orders are kept in the calculation
- Can be fine if the observable is not pathological
- Extrapolating has little cost...

In the quenched QED approximation

- Can be used to isolate $\propto e^{2}$ contribution
- $\left.\frac{O(+e)+O(-e)}{2 e^{2}} \xrightarrow{e \rightarrow 0} \partial_{e^{2}} O(e)\right|_{e=0}$ "numerical calculation of derivative"
- strictly the same cost, for 2 pts
- easier \& cheaper for higher correlations!?
- needs some more investigations

Unquenched QED

reweighting: can be used to compute disconnected diagrams
simulations: no easy way to to keep correlation of two independent runs

