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Dealing with photons

Hard photons - E ∼ many GeV Ultrasoft photons - E ∼ few MeV

Perturbation theory Point-like hadrons

What to do with soft photons?

...Here we come to the rescue...
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Example: CKM matrix elements from semileptonic and leptonic K and π decays

Semileptonic

K π

ℓ

ν
γ ΓK→πlν̄(γ)︸ ︷︷ ︸

experiments

∝ |Vus|2
∣∣fKπ+ (0)

∣∣2︸ ︷︷ ︸
QCD

Leptonic

K/π ℓ

ν

γ
ΓK→`ν̄(γ)

Γπ→`ν̄(γ)︸ ︷︷ ︸
experiments

∝ |Vus|
2

|Vud|2

(
fK
fπ

)2

︸ ︷︷ ︸
QCD

Hadronic matrix elements, lattice results
fKπ+ (0) = 0.956 (8)
fK/fπ = 1.193 (5)

in the isospin symmetric limit.

→ At current precision ( 0.5–1%), IB corrections not negligible ←

Indeed ChPT estimates of these effects are:

(
fK

+π0

+ /fK
−π+

+ −1
)QCD

=2.9(4)%

A. Kastner, H. Neufeld (EPJ C57, 2008)

(
f
K+/fπ+
fK/fπ

−1

)QCD
=−0.22(6)%

V. Cirigliano, H. Neufeld (Phys.Lett.B700, 2011)
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More complications from QED

The target: Fully unquenched QCD + QED

L =
∑
i

ψ̄i [mi − i /Di]ψi + Lgluons + Lphoton, Di,µ = ∂µ + igAaµT
a + ieiAµ

Simulate each quark with its physical mass and charge

Introducing photons
Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator:

∫ δµν
k2
d4k →

∑
k
δµν
k2

massive photons, removal of zero mode, C∗ boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

Practical problem
Traditionally, gauge configuration datasets include only gluons
Dedicated simulations with huge cost
Even greater cost due to additional zero modes.



More complications from QED

The target: Fully unquenched QCD + QED

L =
∑
i

ψ̄i [mi − i /Di]ψi + Lgluons + Lphoton, Di,µ = ∂µ + igAaµT
a + ieiAµ

Simulate each quark with its physical mass and charge

Introducing photons
Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator:

∫ δµν
k2
d4k →

∑
k
δµν
k2

massive photons, removal of zero mode, C∗ boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

Practical problem
Traditionally, gauge configuration datasets include only gluons
Dedicated simulations with huge cost
Even greater cost due to additional zero modes.



More complications from QED

The target: Fully unquenched QCD + QED

L =
∑
i

ψ̄i [mi − i /Di]ψi + Lgluons + Lphoton, Di,µ = ∂µ + igAaµT
a + ieiAµ

Simulate each quark with its physical mass and charge

Introducing photons
Power-like Finite Volume Effects due to long range interaction
Zero mode from photon propagator:

∫ δµν
k2
d4k →

∑
k
δµν
k2

massive photons, removal of zero mode, C∗ boundary conditions...
Renormalization pattern gets more complicated
Additional divergencies arises!
UV completeness: Nobody knows how to tame QED to all orders!

Practical problem
Traditionally, gauge configuration datasets include only gluons
Dedicated simulations with huge cost
Even greater cost due to additional zero modes.



The Roman approach - RM123 collaboration

Pioneering papers
“Isospin breaking effects due to the up-down mass difference in Lattice QCD”, [JHEP 1204 (2012)]
“Leading isospin breaking effects on the lattice”, [PRD87 (2013)]

3) Roma Tre
D.Giusti,
V.Lubicz,
S.Romiti,
F.S,
S.Simula,
C.Tarantino

1) La Sapienza
M.Di Carlo,
G.Martinelli

2) Tor Vergata
G.deDivitiis,
P.Dimopoulos,
R.Frezzotti,
N.Tantalo

? Guest Star from Southampton University: C.T.Sachrajda



The Roman approach - RM123 collaboration

Pioneering papers
“Isospin breaking effects due to the up-down mass difference in Lattice QCD”, [JHEP 1204 (2012)]
“Leading isospin breaking effects on the lattice”, [PRD87 (2013)]

3) Roma Tre
D.Giusti,
V.Lubicz,
S.Romiti,
F.S,
S.Simula,
C.Tarantino

1) La Sapienza
M.Di Carlo,
G.Martinelli

2) Tor Vergata
G.deDivitiis,
P.Dimopoulos,
R.Frezzotti,
N.Tantalo

? Guest Star from Southampton University: C.T.Sachrajda



The Roman approach - RM123 collaboration

Perturbative expansion
Work on top of the isospin symmetric theory L = LIso symm + LIso break

LIso break = eLQED + δmLmass, e2 =
4π

137.04
, δm = (md −mu) /2

QED + isospin breaking pieces are treated as a perturbation.

Pros
Cleaner: Factorize small parameters e and δm, introduce QED only when needed
Cheaper: No need to generate new QCD gauge field backgrounds (and, newly generated

ones are general purpose).

Cons
More vertex and correlations functions to be computed
Corrections to be computed separately for each observable
Including charge effects in the sea is costly (fermionically disconnected diagrams).

→ Only method to include QED in matrix elements (is it? cfr. backup slides)
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What to do with zero mode?

∫
δµν
k2
d4k →

∑
k

δµν
k2

Give a mass to the photon: δµν
k2
→ δµν

k2+m2

3 pole shifted to imaginary momentum, not a problem anymore
7 need to extrapolate m→ 0.

Remove “some” zero modes

4D zero mode only:
∑

k →
∑

k 6=0

3 pole removed, irrelevant when V →∞
7 nonlocal constraint, T/L3 divergence
∼ not tragic when working at fixed T/L.

3D zero modes:
∑

k →
∑

k0 6=0

3 no divergence anymore
7 still nonlocal constraint
∼ renormalizable at O (αQED)?

Use C∗ Boundary conditions
3 local
7 needs dedicated simulations
∼ flavor violation across boundaries.
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1) The perturbative expansion in δm

Split mass lagrangian in two contributions:

Lmass =

(
md +mu

2

)
︸ ︷︷ ︸

mud

(
ūu+ d̄d

)
−
(
md −mu

2

)
︸ ︷︷ ︸

δm

(
ūu− d̄d

)

Split action in two parts:

S = S0 − δmSm,

{
S0 isospin simmetric action

Sm perturbation =
∑

x

(
ūu− d̄d

)
Expand functional integral:

〈O〉 =

∫
DψOe−S0+δmŜ∫
Dψe−S0+δmŜ

1st'
∫
DψOe−S0 (1 + δmSm)∫
Dψe−S0 (1 + δmSm)

'
〈O〉0 + δm 〈OSm〉0

1 + δm
�

��〈Sm〉0
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1) The perturbative expansion in δm

Isospin correction determination
Relative correction to an observable O is obtained as:

δ 〈O〉
〈O〉0

≡
〈O〉 − 〈O〉0
〈O〉0

' δm〈ŜO〉0
〈O〉0

, Ŝ =
∑
x

(
ūu− d̄d

)

Predictivity of the method
A physical observable is needed to fix δm (as for any parameter)
Then, in principle any observable can be corrected.

Diagrammatically
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2) The perturbative expansion in e2

Keep QCD to all orders and QED to O (e2)

〈O〉 =
1

Z

∫
D
[
Aµ, U

QCD, ψ, ψ̄
]
O
(
1− e2S1 +O

(
e4
))

exp [−S0]

N.B: O (e) vanishes due to charge symmetry.

Which on the lattice means...

S1 =

[∫
dxVµ (x)Aµ (x)

]2

︸ ︷︷ ︸+

∫
dxTµ (x)A2

µ (x)︸ ︷︷ ︸
x

x

V 2: Two photon-fermion -fermion vertices (as in the continuum)
T : One photon-photon-fermion-fermion vertex (tadpole: lattice special).
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The case of the pion

Basic correlation function

C (t) =
∑
~x

〈
P (~x, t)P † (0)

〉
QCD+QED

, P = ψ̄γ5ψ

Functional integral

C (t) = C0 (t) + C1 (t) =

〈
P (~x, t)P † (0)

〉
QCD

− e2

〈
P (~x, t)

∑
y

S1 (y)P † (0)

〉
QCD

Now take all Wick contractions...
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Diagrams

Fermionically connected - easy part (so to say)

0 x

B

A

0 x

A B

0 x

A

(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

0 x

”monocle”

0 x

”handcuffs”

0 x 0 x

“blinking” “laughing”

“Disconnected isn’t difficult” [K.Szabo]



Diagrams

Fermionically connected - easy part (so to say)

0 x

B

A

0 x

A B

0 x

A

(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

0 x

”monocle”

0 x

”handcuffs”

0 x 0 x

“blinking” “laughing”

“Disconnected isn’t difficult” [K.Szabo]



Diagrams

Fermionically connected - easy part (so to say)

0 x

B

A

0 x

A B

0 x

A

(gluons not drawn, connecting fermion lines in all possible ways)

Disconnected - various degree of nastiness - work is in progress to include

0 x

”monocle”

0 x

”handcuffs”

0 x 0 x

“blinking” “laughing”

“Disconnected isn’t difficult” [K.Szabo]



Hadron masses
Infrared safe

Hadron masses are finite quantities (after that the action is properly renormalized)
True without and with QED.

Computation
Two-point correlation functions projected to zero momentum
Large euclidean time behaviour (see next slide).

Other collaborations, other approaches
FNAL/MILC, BMW, QCDSF/UKQCD: fully dynamical simulation of QCD+QED
RBC/UKQCD: comparison of perturbative and all-order approach.
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Pseudoscalar meson 2pts. correlation function (no QED)
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Hadron masses at O
(
e2
)
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Some results, meson mass (perturbative expansion)
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RM123 coll., “Leading isospin-breaking corrections to pion, K and D mesons”, PRD95 (2017)



Some results, baryons (direct simulation)
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BMW coll.: “Ab initio calculation of the neutron-proton mass difference“, Science 347 (2015)



gµ−2

Infrared safe
Neutral current
True without and with QED.

Computation of Strange and Charm contributions [D.Giusti et al, JHEP 1710 (2017) 157]

Moments method (cfr. yesterday’s talk by K.Szabo)
QED corrections negligible
Now it’s the turn of the light channel QED correction...
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gµ − 2 QED corrections to light channel (PRELIMINARY)

In line with dispersive approach estimate (see K.Szabo, yesterday’s talk)



Matrix elements
More problems

In general the amplitudes, are infrared divergent
On the lattice, a natural infrared cutoff is provided by the finite volume
But physically, only combinations of Real + Virtual contribution is finite.

To be specific
We consider the leptonic decay of a charged pion
The method is general

Nobody has gone there before!
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Leptonic decays of mesons (at tree level in QED: e = 0)

Full process Eff. weak hamiltonian QCD side

W ℓ+

νℓ νℓ

ℓ+
π+

Two point correlation functions

Γπ→`ν̄ = |Vxy|︸︷︷︸
CKM

2K (m`, mM )︸ ︷︷ ︸
kinematics

| fπ︸ ︷︷ ︸
dec. constant

|2

fπ =
ZA
mπ

=
〈0|A0|π〉
mπ

Z: coupling of current inducing decay
From lattice, 2 point correlation functions:

C(τ) = 〈O†A0
(τ)OP (0)〉, O = ψ̄Γψ 0 4 8 12 16 20

τ

1e-09

1e-08

1e-07

1e-06

1e-05
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C
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)

Pion 2pts. correlation function

C(τ)=Z
P
Z

A
0

e
-m

π
τ

/2m
π
 at large τ
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Leptonic decays of mesons (with QED)

Zero photons in the final state, O (e2)

Γ0ph
π+→`+ν =∣∣A0

∣∣2 + 2e2
∣∣A0A1

∣∣+O
(
e4
) A0 =

A1 = +
0 t

+ ...

IR DIVERGENT

One photon in the final state, O (e2)

Γ1ph
π+→`+νγ = e2

∣∣B0
∣∣2 B0 =

Again, IR DIVERGENT

Solution [Bloch and Nordsieck, PR52 (1937)]

Γ = Γ0ph + Γ1ph is finite
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The strategy [N.Carrasco et al., PRD91 (2015)]

Virtual photon

Needs to implement leptons
Not too demanding numerically.

0 t

Real photon
Slightly more numerically demanding/different process
For the time being, use point-like approximation and consider Eγ < 20 MeV

B0 = −→

Cut-off appropriate experimentally (γ detector sensitivity) and theoretically (π inner structure)

(Work is in progress to compute on the Lattice)
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Intermediate step

Γ (∆Eγ) = Γ0ph︸︷︷︸
lattice in a box

+ Γ1ph
pt (∆Eγ)︸ ︷︷ ︸

perturbation theory, massive photon

In our strategy
To ensure proper cancellation of IR divergence with different regulator, add and subtract Γ0

pt

Γ (∆Eγ) = lim
L→∞

[
Γ0ph (L)− Γ0

pt (L)
]

︸ ︷︷ ︸
finite

+ lim
mγ→0

[
Γ0
pt (mγ) + Γ1ph

pt (mγ ,∆Eγ)
]

︸ ︷︷ ︸
finite

Γ0
pt,V : V.Lubicz et al, Phys.Rev. D95 (2017)

Perturbation theory with pointlike pion in finite volume (V = L4)

IR divergences ∝ logL cancel in the difference Γ0ph (L)− Γ0
pt (L) (fit the remainder)

Also 1/L corrections are universal and cancel in the difference.

limmγ→0

[
Γ0
pt (mγ) + Γ1ph

pt (mγ,∆Eγ)
]
: N.Carrasco et al. Phys.Rev. D91 (2015)

Perturbation theory with pointlike pion with finite photon mass
Neglected structure dependence: estimated to be small (V.Cirigliano, I.Rosell, JHEP’07)
This might not be the case for D or B mesons (mB∗ −mB ∼ 45 MeV)
Reproduce the the total rate (Berman, PRL 1958, and Kinoshita, PRL 1959).
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Matching to the “real world”

Correlation functions computed with bare operators

O
i

Needs renormalization: Oreni = ZijO
bare
j

O1,2 = (V ∓A)q ⊗ (V −A)`

O3,4 = (S ∓ P )q ⊗ (S − P )`

O5 =
(
T + T̃

)
q
⊗
(
T + T̃

)
`

RI-MOM (no QED)
Compute amputated green functions:

ΛO (p) = S−1 (p)

〈∑
x,y

e−ip(x−y)ψ (x)O (0)ψ (y)

〉
S−1 (p)

Impose RI-MOM condition at given p2 (average all equivalent momenta)

ZO =
Zq

Tr
[
ΛO (p) ΛtreeO (p)−1

]
Chiral extrapolate m→ 0



Matching to the “real world” (continued)

RI-MOM with QED
As a first step [D.Giusti et al., PRL ’18]: RI-MOM for QCD + perturbation theory for QED
In the coming-soon paper: RI-(S)MOM for QCD + QED

RI-MOM, perturbative expansion: ratio with QCD and QED

δZQED+QCD
O

ZQCD
O ZQED

O

=
δZQCD+QED

q

ZQCDq ZQEDq

−
Tr
[
δΛQCD+QED

O (p) ΛtreeO (p)−1
]

Tr
[
ΛQCDO (p) ΛtreeO (p)−1

]
Tr
[
ΛQEDO (p) ΛtreeO (p)−1

]
Large cancellation of cut-off effects, anomalous dimensions, noise, etc

Measure of the non-factorizability of the renormalization constants.

Vertices (with or without gluons, not drawn)
u

d̄

νℓ

ℓ+

p

p

p

p

k

Γx⊗Γy

(a)

u

d̄

νℓ

ℓ+

p

p

p

p k

Γx⊗Γy

(b)

u

d̄

νℓ

ℓ+

p

p

p

p

k

Γx⊗Γy

(c)



An example: QED correction to Z1,1
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Non-interacting theory
(all QCD links set to 1)



An example: QED correction to Z1,1
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What’s left
Non-factorizable contribution to ZQCD+QED

Multiply with ZQED,EXACT

Still, matching to MS assumes factorization...
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Matching to W-reg

Effective theory of Weak interaction
Remember that this computation is done in the Weak interaction effective theorys

Heff =
1√
2

GF︸︷︷︸
muon decay

V CKM
ij

(
1 +

α

π
log

MZ

MW

)
︸ ︷︷ ︸

SM-Fermi theory matching

O1︸︷︷︸
W-reg

W-reg

Historically, the scheme in which the loop corrections are computed

Gµν (k) =
δµν
k2
→ M2

W

M2
W−k2

δµν
k2

cannot be implemented on the lattice MW � 1
a

Status
Matching from RI-MOM to W-reg computed at 1-loop
Possibly 2-loops in the future?



Infinite volume extrapolation

Volume dependence

IR divergences ∝ logL cancel in the difference Γ0ph (L)− Γ0
pt (L)

1/L cancel as well (Ward identity)
Best fit with 1/L2 (and 1/L3) and extrapolate to L→∞



Let’s start from a slightly simpler quantity

QED contribution to ratio of decay width of Kaon and Pion
ΓK+→`+ν(γ)
Γπ+→`+ν(γ)

=
ΓK+→`+ν
Γπ+→`+ν

(1 + δRKπ) , δRKπ = δRK − δRπ

Reduction of noise
Large cancellation of renormalization correction
Suppression of finite volume dependence.
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0.000

0.00 0.01 0.02 0.03 0.04 0.05

physical point
β = 1.90, L/a = 20 (FVE corr.)
β = 1.90, L/a = 24 (FVE corr.)
β = 1.90, L/a = 32 (FVE corr.)

β = 1.90, L/a = 40 (FVE corr.)
β = 1.95, L/a = 24 (FVE corr.)
β = 1.95, L/a = 32 (FVE corr.)
β = 2.10, L/a = 48 (FVE corr.)

continuum limit
fit at β = 1.90
fit at β = 1.95
fit at β = 2.10

δ 
R Kπ

m
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   (GeV)

m
s
 = m

s
phys

PDG

[D.Giusti et al., Phys. Rev. Lett. 120, 072001 (2018)]
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Separate Pion and Kaon corrections [PRELIMINARY]
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Development

Tomorrow (so to say)
Finalizing the nonperturbative renormalization with QCD+QED
Provide final results for δRK and δRπ

The day after tomorrow
Including fermionic-disconnected diagrams
Lattice calculation of real emission
Heavy mesons
g − 2 hadronic vacuum polarization (O (1%)... sleep in peace)

Maybe one day
Develop a strategy for semileptonic decays (analytic continuation to Minkowsky)
Corrections to K → ππ

. . .
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THANK YOU!



Can’t we compute this with the “to all order” approach?

Stochastic = Put the photons in the links UQCDx,µ → UQCDx,µ exp (ieAx,µ)

1 1.5 2

a
2
p

2

-7e-06

-6e-06

-5e-06

-4e-06

-3e-06

Perturbative

To all orders, but TINY e
2

u

d̄

νℓ

ℓ+

p

p

p

p k

Γx⊗Γy

(b)

In the quenched QED approximation
Can be used to isolate ∝ e2 contribution
O(+e)+O(−e)

2e2
e→0−→ ∂e2O (e)|e=0

“numerical calculation of derivative”
strictly the same cost, for 2pts
easier & cheaper for higher correlations!?
needs some more investigations

What if you don’t take e→ 0?
Higher orders are kept in the
calculation
Can be fine if the observable is not
pathological
Extrapolating has little cost...

Unquenched QED
reweighting: can be used to compute

disconnected diagrams
simulations: no easy way to to keep

correlation of two
independent runs




