Isospin Breaking Effects on the Lattice

Vera Gülpers

School of Physics and Astronomy University of Southampton

May 22, 2018

Southampton

RBC/UKQCD Collaboration

BNL and RBRC

Mattia Bruno Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

University of Connecticut

Tom Blum Dan Hoying Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli Tobias Tsang Oliver Witzel Azusa Yamaguchi

KEK

Julien Frison

University of Liverpool

Nicolas Garron

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner Andrew Lawson Edwin Lizarazo Chris Sachrajda

York University (Toronto)

Renwick Hudspith

Motivation

- \blacktriangleright calculation of several quantities in lattice QCD reaching precision of $\lesssim 1\%$
- e.g. flavor physics

• e.g. Hadronic Vacuum Polarization contribution to \mathbf{a}_{μ} aiming at 1%

Motivation

- calculations usually done in isospin symmetric limit (treat u and d as equal)
- two sources of isospin breaking effects
 - different masses for up- and down quark (of $\mathcal{O}((m_d m_u)/\Lambda_{QCD}))$
 - Quarks have electrical charge (of O(α))
- \blacktriangleright lattice calculation aiming at 1% precision requires to include isospin breaking
- Status of calculations including IB corrections on the lattice
 - IB corrections to hadron masses [e.g. S. Borsanyi et al. Phys. Rev. Lett. 111 (2013) 252001; G. M. de Divitiis et al. Phys. Rev. D87 (2013) 114505; S. Borsanyi et al/Science 347 (2015) 1452; R. Horsley et al. J. Phys. G43 (2016) 10LT02; R. Horsley et al. JHEP 04 (2016) 093; S. Basek et al. PoS LATTICE2015 (2016) 259; Z. Fodor et al. Phys. Rev. Lett. 117 (2016) 082001; D. Giusti et al. Phys.Rev. D95 (2017) 114504; V.G. et al., JHEP 09, 153 (2017)]
 - First calculations of IB corrections to hadronic vacuum polarization [V.G. et al., JHEP 09, 153 (2017); D. Giusti et al., JHEP 10 157 (2017); B. Chakraborty et al. Phys. Rev. Lett. 120 152001 (2018);

C. Lehner, V.G. et al. arXiv:1801.07224], [see also talk by M. Della Morte]

QED corrections to pion/kaon decay rates
 [N. Carrasco et al. Phys. Rev. D91 (2015) 074506; V. Lubicz et al. Phys. Rev. D95 (2017) 034504; D. Guisti et al. Phys.Rev.Lett. 120 (2018) no.7, 072001], [see also talk by F. Sanfilippo]

Outline

- Including Isospin Breaking effects on the lattice
 - stochastic method
 - perturbative method
 - direct comparison of results [V.G. et al., JHEP 09, 153 (2017)]
 - meson masses
 - HVP
 - strong IB
- ► IB Corrections to HVP at the physical point [C. Lehner, V.G. et al. arXiv:1801.07224]
- Finite volume corrections for HVP
- Summary

Outline

Motivation

Including Isospin Breaking effects on the lattice

IB Corrections to HVP at the physical point

Finite Volume Corrections for HVP

Summary

QED on the lattice

Euclidean path integral including QED

$$\langle 0 \rangle = \frac{1}{Z} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[U] \mathcal{D}[A] \ 0 \ e^{-S_F[\Psi, \overline{\Psi}, U, A]} e^{-S_G[U]} e^{-S_{\gamma}[A]}$$

non-compact photon action

$$\mathsf{S}_{\gamma}\left[\mathsf{A}\right] = \frac{\mathsf{a}^{4}}{4} \sum_{\mathsf{x}} \sum_{\mu,\nu} \left(\partial_{\mu}\mathsf{A}_{\nu}\left(\mathsf{x}\right) - \partial_{\nu}\mathsf{A}_{\mu}\left(\mathsf{x}\right)\right)^{2}$$

- two approaches for including QED
 - stochastic QED using U(1) gauge configurations
 [A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]
 - perturbative QED by expanding the path integral in α [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

$$\left\langle \mathbf{0}
ight
angle = \left\langle \mathbf{0}
ight
angle_{\mathbf{0}} + rac{1}{2} \, \mathrm{e}^2 \left. rac{\partial^2}{\partial \mathrm{e}^2} \left\langle \mathbf{0}
ight
angle
ight|_{\mathrm{e}=\mathbf{0}} + \mathcal{O}(lpha^2)$$

stochastic method

Feynman gauge

$$\mathsf{S}^{\mathsf{Feyn}}_{\gamma}[\mathsf{A}] = \mathsf{S}_{\gamma}[\mathsf{A}] + \frac{1}{2} \sum_{\mathsf{x}} \left(\sum_{\mu} \partial_{\mu} \mathsf{A}_{\mu}(\mathsf{x}) \right)^2 = -\frac{1}{2} \sum_{\mathsf{x}} \sum_{\mu} \mathsf{A}_{\mu}(\mathsf{x}) \partial^2 \mathsf{A}_{\mu}(\mathsf{x})$$

in momentum space

$$S_{\gamma}^{\text{Feyn}}[A] = \frac{1}{2N} \sum_{\mathbf{k}, \vec{\mathbf{k}} \neq 0} \hat{\mathbf{k}}^2 \sum_{\mu} \left| \tilde{A}_{\mu}(\mathbf{k}) \right|^2 \qquad \quad \hat{\mathbf{k}}_{\mu} = 2 \sin\left(\frac{\mathbf{k}_{\mu}}{2}\right)$$

with $\boldsymbol{\mathsf{N}}$ number of lattice sites

- ▶ remove photon zero mode (e.g. spatial zero-modes \rightarrow QED_L [S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)])
- draw $\tilde{A}_{\mu}(\mathbf{k})$ from Gaussian distribution with variance $2N/\hat{k}^2$
- Fourier Transform to position space

stochastic method

• multiply SU(3) gauge links with U(1) photon fields

 $\mathsf{U}_{\mu}(\mathsf{x}) \to \mathrm{e}^{\mathrm{i} \mathsf{e} \mathsf{A}_{\mu}(\mathsf{x})} \mathsf{U}_{\mu}(\mathsf{x})$

- calculate hadronic observable as without QED
- ► remove O(e) noise by averaging over +e and -e [T. Blum et al., Phys. Rev. D76 (2007) 114508]
- electro quenched approximation
 - \rightarrow sea quarks electrically neutral
 - \rightarrow QED configurations generated independently of QCD configurations
- unquenched calculation
 - \rightarrow generate combined QED+QCD configurations
- \blacktriangleright QED correction to all orders in α

• expand path integral in α [RM123 Collaboration, Phys.Rev. **D87**, 114505 (2013)]

$$\left\langle \mathbf{0} \right\rangle = \left\langle \mathbf{0} \right\rangle_0 + \frac{1}{2} \, \mathrm{e}^2 \left. \frac{\partial^2}{\partial \mathrm{e}^2} \left\langle \mathbf{0} \right\rangle \right|_{\mathrm{e}=0} + \mathcal{O}(\alpha^2)$$

• at $\mathcal{O}(\alpha)$ for mesonic two-point functions

conserved vector current,
tadpole operator

electro-quenched: no disconnected diagrams like

e.g. photon exchange for a charged Kaon

$$\mathsf{C}(\mathsf{z}_0) = \sum_{\mu,\nu} \sum_{\mathsf{z}} \sum_{\mathsf{x},\mathsf{y}} \operatorname{Tr} \Big[\mathsf{S}(\mathsf{z},\mathsf{x}) \mathsf{\Gamma}^{\mathsf{c}}_{\mu} \mathsf{S}(\mathsf{x},0) \gamma_5 \mathsf{S}(0,\mathsf{y}) \mathsf{\Gamma}^{\mathsf{c}}_{\nu} \mathsf{S}(\mathsf{y},\mathsf{z}) \gamma_5 \Big] \, \boldsymbol{\Delta}_{\mu\nu}(\mathsf{x}-\mathsf{y})$$

Vera Gülpers (University of Southampton)

photon propagator Feynman gauge

$$\Delta_{\mu\nu}(\mathbf{x}-\mathbf{y}) = \delta_{\mu\nu} \frac{1}{\mathsf{N}} \sum_{\mathbf{k}, \mathbf{\vec{k}} \neq 0} \frac{\mathsf{e}^{\mathsf{i}\mathbf{k} \cdot (\mathbf{x}-\mathbf{y})}}{\hat{\mathsf{k}}^2}$$

remove all spatial zero modes → QED_L
 [S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413–441 (2008)]

- calculate diagrams using sequential propagators
- factorize photon propagator $\Delta_{\mu\nu}(x y) = f(x)g(y)$

► method 1:
$$\langle \eta(\mathbf{u})\eta^{\dagger}(\mathbf{y})\rangle_{\eta} = \delta_{\mathbf{u}\mathbf{y}}$$

$$\Delta_{\mu\nu}(\mathbf{x} - \mathbf{y}) = \Big\langle \sum_{\mathbf{u}} \Delta_{\mu\nu}(\mathbf{x} - \mathbf{u})\eta(\mathbf{u})\eta^{\dagger}(\mathbf{y})\Big\rangle_{\eta} = \Big\langle \tilde{\Delta}_{\mu\nu}(\mathbf{x})\eta^{\dagger}(\mathbf{y})\Big\rangle_{\eta}$$

 \rightarrow sequential sources for every combination of $\{\mu,\nu\},$ e.g.

 \rightarrow 17 inversions in Feynman gauge

► method 1:
$$\langle \eta(\mathbf{u})\eta^{\dagger}(\mathbf{y})\rangle_{\eta} = \delta_{\mathbf{u}\mathbf{y}}$$

$$\Delta_{\mu\nu}(\mathbf{x} - \mathbf{y}) = \Big\langle \sum_{\mathbf{u}} \Delta_{\mu\nu}(\mathbf{x} - \mathbf{u})\eta(\mathbf{u})\eta^{\dagger}(\mathbf{y})\Big\rangle_{\eta} = \Big\langle \tilde{\Delta}_{\mu\nu}(\mathbf{x})\eta^{\dagger}(\mathbf{y})\Big\rangle_{\eta}$$

 \rightarrow sequential sources for every combination of $\{\mu,\nu\}$, e.g.

ightarrow 17 inversions in Feynman gauge

► method 2: $\langle \xi_{\sigma}(\mathbf{u})\xi_{\nu}^{\dagger}(\mathbf{y}) \rangle_{\xi} = \delta_{uy}\delta_{\sigma\nu}$ [RM123, Phys.Rev. D87, 114505 (2013)] $\Delta_{\mu\nu}(\mathbf{x} - \mathbf{y}) = \left\langle \sum_{\mathbf{u}} \sum_{\sigma} \Delta_{\mu\sigma}(\mathbf{x} - \mathbf{u})\xi_{\sigma}(\mathbf{u})\xi_{\nu}^{\dagger}(\mathbf{y}) \right\rangle_{\xi} = \left\langle \hat{\Delta}_{\mu}(\mathbf{x})\xi_{\nu}^{\dagger}(\mathbf{y}) \right\rangle_{\xi}$

ightarrow sequential sources summed over μ or u, e.g.

 \rightarrow 5 inversions

stochastic method

perturbative method

- stochastic method
 - QED corrections to all orders in lpha

perturbative method

• QED corrections at fixed order in $\mathcal{O}(\alpha)$

- stochastic method
 - $\blacktriangleright\,$ QED corrections to all orders in α
 - once the stochastic U(1) fields are generated, calculation proceeds without QED \rightarrow computationally cheaper than perturbative method

- perturbative method
 - QED corrections at fixed order in $\mathcal{O}(\alpha)$
 - ► calculation more involved, requires three- and four-point functions, convolution with photon propagator → more expensive than stochastic method

- stochastic method
 - QED corrections to all orders in lpha
 - once the stochastic U(1) fields are generated, calculation proceeds without QED \rightarrow computationally cheaper than perturbative method
 - contributions from different diagrams cannot be distinguished

- perturbative method
 - QED corrections at fixed order in $\mathcal{O}(\alpha)$
 - ► calculation more involved, requires three- and four-point functions, convolution with photon propagator → more expensive than stochastic method
 - contributions from different diagrams, e.g. photon exchange, self energy, can be distinguished

- stochastic method
 - $\blacktriangleright\,$ QED corrections to all orders in α
 - once the stochastic U(1) fields are generated, calculation proceeds without QED \rightarrow computationally cheaper than perturbative method
 - contributions from different diagrams cannot be distinguished
 - unqenching requires new gauge configurations, combined QED + QCD
- perturbative method
 - QED corrections at fixed order in $\mathcal{O}(\alpha)$
 - ► calculation more involved, requires three- and four-point functions, convolution with photon propagator → more expensive than stochastic method
 - contributions from different diagrams, e.g. photon exchange, self energy, can be distinguished
 - unqenching requires additional quark-disconnected diagrams

- stochastic method
 - $\blacktriangleright\,$ QED corrections to all orders in α
 - once the stochastic U(1) fields are generated, calculation proceeds without QED \rightarrow computationally cheaper than perturbative method
 - contributions from different diagrams cannot be distinguished
 - unqenching requires new gauge configurations, combined QED + QCD
- perturbative method
 - QED corrections at fixed order in $\mathcal{O}(\alpha)$
 - ► calculation more involved, requires three- and four-point functions, convolution with photon propagator → more expensive than stochastic method
 - contributions from different diagrams, e.g. photon exchange, self energy, can be distinguished
 - unqenching requires additional quark-disconnected diagrams
- direct comparison of results and statistical errors for QED corrections to meson masses and hadronic vacuum polarization [V.G. et al., JHEP 1709 (2017) 153]

Direct Comparison of Results - Meson Masses

- $\blacktriangleright~N_f=2+1$ Domain Wall Fermions, $24^3\times 64$ lattice, $a^{-1}=1.78~\text{GeV}$
- \blacktriangleright isospin symmetric pion mass $\mathbf{m}_{\pi}=\mathbf{340}$ MeV
- QED correction to effective mass:

$$\delta m_{\rm eff}^{\rm cosh}(t) = m_{\rm eff}(t) - m_{\rm eff}^0(t)$$

perturbative:

stochastic:

$$\delta m_{\rm eff}^{\rm ratio}(t) = \frac{\delta C(t)}{C_0(t)} - \frac{\delta C(t+1)}{C_0(t+1)}$$

(×corr for periodic boundary)

Comparison of statistical errors

- computational cost
 - perturbative: 17 inversions per quark flavor for single- μ insertion
 - 5 inversions per quark flavor for summed- μ insertion
 - stochastic: **3** inversions per quark flavor
- ▶ statistical error **△** of QED contribution to effective Kaon mass
- ▶ scaled by $\sqrt{\# \text{ inversions}}$ (equal cost comparison)

stochastic method gives 1.5-2 times smaller statistical errors for same cost

Perturbative Expansion HVP

Vector-Vector correlation function

$$\mathsf{C}_{\mu
u}(\mathsf{x}) = \langle \mathsf{V}_{\mu}(\mathsf{x})\mathsf{V}_{
u}(\mathbf{0})
angle$$

HVP tensor

$$\Pi_{\mu\nu}(\mathsf{Q}) = \sum_{\mathsf{x}} \mathrm{e}^{-\mathrm{i}\mathsf{Q}\cdot\mathsf{x}}\mathsf{C}_{\mu\nu}(\mathsf{x})$$

conserved vector current depends on link variables

$${\sf U}_\mu({\sf x}) o {\sf e}^{{\sf ieA}_\mu({\sf x})}{\sf U}_\mu({\sf x})$$
 and thus ${\sf V}^{\sf c}_\mu({\sf x}) o {\sf V}^{\sf c,{\sf e}}_\mu({\sf x})$

perturbative expansion

$$\left\langle \mathsf{V}^{\mathsf{c},\mathsf{e}}_{\mu}(\mathsf{x})\mathsf{V}^{\ell}_{\nu}(0)\right\rangle = \left\langle \mathsf{V}^{\mathsf{c}}_{\mu}(\mathsf{x})\mathsf{V}^{\ell}_{\nu}(0)\right\rangle_{0} + \frac{1}{2}\,\mathsf{e}^{2}\,\left.\frac{\partial^{2}}{\partial\mathsf{e}^{2}}\left\langle \mathsf{V}^{\mathsf{c},\mathsf{e}}_{\mu}(\mathsf{x})\mathsf{V}^{\ell}_{\nu}(0)\right\rangle\right|_{\mathsf{e}=0}$$

two additional types of diagrams

Vera Gülpers (University of Southampton)

Direct Comparison of Results - HVP

- $\delta a_{\mu} < 1\%$ for u quarks
- comparision of statistical errors

"Combining" stochastic and perturbative method

write photon propagator as

$$\Delta_{\mu
u}(x - y) = \langle A_{\mu}(x)A_{\nu}(y) \rangle$$

- use stochastic photon fields $A_{\mu}(x)$ to estimate $\Delta_{\mu\nu}(x y)$ [D. Giusti et al. Phys.Rev. D95 (2017) 114504]
- quark photon vertex insertions of

$$\Gamma^{c}_{\mu}A_{\mu}(x)$$

path integral

$$\langle \mathbf{0} \rangle = \frac{1}{Z} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[\mathbf{U}] \mathcal{D}[\mathbf{A}] \ \mathbf{0} \ e^{-S_{F}[\Psi, \overline{\Psi}, U, A]} e^{-S_{G}[U]} e^{-S_{\gamma}[A]}$$

- using the same stochastic photon fields as for stochastic method gives exact *O*(α)-truncation of results from stochastic method
- 4 inversions

strong Isospin Breaking

- different bare quark masses for up- and down quark
- expansion in $\Delta m = (m_u m_d)$ [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\langle \mathbf{O} \rangle_{\mathbf{m}_{u} \neq \mathbf{m}_{d}} = \langle \mathbf{O} \rangle_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \Delta \mathbf{m} \left. \frac{\partial}{\partial \mathbf{m}} \left\langle \mathbf{O} \right\rangle \right|_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \mathcal{O} \left(\Delta \mathbf{m}^{2} \right)$$
with
$$\left. \frac{\partial}{\partial \mathbf{m}} \left\langle \mathbf{O} \right\rangle \right|_{\mathbf{m}_{u} = \mathbf{m}_{d}} = \left\langle \mathbf{O} \, \mathcal{S} \right\rangle_{\mathbf{m}_{u} = \mathbf{m}_{d}}$$
scalar current
$$\mathcal{S} = \sum_{\mathbf{x}} \overline{\psi}(\mathbf{x}) \, \psi(\mathbf{x})$$

quark mass tuning at the physical point, e.g. by fixing masses of charged pion, charged and neutral kaon

►

Outline

Motivation

Including Isospin Breaking effects on the lattice

IB Corrections to HVP at the physical point

Finite Volume Corrections for HVP

Summary

Muon \mathbf{a}_{μ} and the hadronic vacuum polarisation (HVP)

experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

$$a_{\mu} = 11659208.9(5.4)(3.3) imes 10^{-10}$$

Standard Model [PDG]

$$a_{\mu} = 11659180.3(0.1)(4.2)(2.6) \times 10^{-10}$$

- Comparison of theory and experiment: ${f 3.6\sigma}$ deviation
- largest error on SM estimate from HVP

▶ current best estimate from e^+e^- → hadrons [Davier et al., Eur.Phys.J. C71, 1515 (2011)] (692.3 ± 4.2 ± 0.3) × 10⁻¹⁰

HVP from the R-ratio \leftrightarrow Lattice

▶ see also talks on g-2 yesterday

- \blacktriangleright result using R-ratio $a_{\mu}^{\rm hvp}$ = (692.3 \pm 4.2 \pm 0.3) \times 10 $^{-10}$
- \blacktriangleright lattice result to be competitive with R-ratio requires precision of $\lesssim 1\%$ \rightarrow Isospin Breaking Corrections

Status IB corrections to HVP

Isospin Breaking corrections to HVP

- QED corrections to HVP:
 - unphysical quark masses [V.G. et al., JHEP 09, 153 (2017)]
 - strange, charm; extrapolated to physical quark masses [D. Giusti et al., JHEP 10, 157 (2017)]
 - directly at physical quark masses [C. Lehner, V.G. et al. arXiv:1801.07224]
- strong IB corrections to HVP:
 - unphysical quark masses [V.G. et al., JHEP 09, 153 (2017)]
 - directly at physical quark masses, $N_f = 1 + 1 + 1 + 1$ [B. Chakraborty *et al.* Phys. Rev. Lett. **120** 152001 (2018)]
 - directly at physical quark masses [C. Lehner, V.G. et al. arXiv:1801.07224]

IB corrections to HVP at physical point

- ▶ see [C. Lehner, V.G. *et al.* arXiv:1801.07224]
- ▶ $N_f = 2 + 1$ Möbius DWF, $48^3 \times 96$ lattice, $a^{-1} = 1.730(4)$ GeV [T. Blum *et al.* Phys.Rev. *D93* (2016) no.7, 074505]
- ► IB corrections from expansion around isospin symmetric calculation

$$C(t) = C^{0}(t) + \alpha C^{\text{QED}}(t) + \sum_{f} \Delta m_{f} C^{\Delta m_{f}}(t)$$

- ▶ QED corrections using perturbative method with stochastic photon fields
- isospin symmetric calculation using quark masses determined without QED [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]
- physical quark masses including QED:
 - ▶ tune (u, d, s) quark masses to physical values including QED → in addition: fix lattice spacing with QED
 - use these tuned masses and perturbative expansion in mass

Tuning the quark masses

tune (u,d,s) masses to reproduce experimental π⁺, K⁺ and K₀ mass (and check π⁰ mass)

$$\begin{split} \mathsf{a} \ \mathsf{m}_{\pi^+}^{\mathsf{exp}} &= \left[\hat{\mathsf{m}}_{\pi^+} + \delta^{\mathsf{QED}} \mathsf{m}_{\pi^+} + \left(\Delta \mathsf{m}_{\mathsf{d}} + \Delta \mathsf{m}_{\mathsf{u}} \right) \, \delta^{\mathsf{sIB},\ell} \mathsf{m}_{\pi^+} \right] \\ \mathsf{a} \ \mathsf{m}_{\mathsf{K}^+}^{\mathsf{exp}} &= \left[\hat{\mathsf{m}}_{\mathsf{K}^+} + \delta^{\mathsf{QED}} \mathsf{m}_{\mathsf{K}^+} + \Delta \mathsf{m}_{\mathsf{u}} \, \, \delta^{\mathsf{sIB},\ell} \mathsf{m}_{\mathsf{K}^+} + \Delta \mathsf{m}_{\mathsf{s}} \, \, \delta^{\mathsf{sIB},\mathsf{s}} \mathsf{m}_{\mathsf{K}^+} \right] \\ \mathsf{a} \ \mathsf{m}_{\mathsf{K}^0}^{\mathsf{exp}} &= \left[\hat{\mathsf{m}}_{\mathsf{K}^0} + \delta^{\mathsf{QED}} \mathsf{m}_{\mathsf{K}^0} + \Delta \mathsf{m}_{\mathsf{d}} \, \, \delta^{\mathsf{sIB},\ell} \mathsf{m}_{\mathsf{K}^0} + \Delta \mathsf{m}_{\mathsf{s}} \, \, \delta^{\mathsf{sIB},\mathsf{s}} \mathsf{m}_{\mathsf{K}^0} \right] \end{split}$$

m̂_H: isospin symmetric mass of **H**, δ^{QED}**m**_H: QED correction to mass of **H** δ^{sIB,f}**m**_H from

► lattice spacing: fix another mass including QED → here: Omega-Baryon

$$\mathbf{a} \rightarrow \mathbf{a}(\mathbf{\Delta}\mathbf{m}_{\mathrm{s}}) = \left(\hat{\mathbf{m}}_{\Omega} + \delta^{\mathsf{QED}}\mathbf{m}_{\Omega} + \mathbf{3}\,\mathbf{\Delta}\mathbf{m}_{\mathrm{s}}\,\delta^{\mathsf{sIB},\mathsf{s}}\mathbf{m}_{\Omega}\right) / \mathbf{m}_{\Omega}^{\mathsf{exp}}$$

► connected

vector two-point function

$$\mathsf{C}_{\mu
u}(\mathsf{t}) = \sum_{ec{\mathsf{x}}} \left< \mathsf{J}_{\mu}(\mathsf{t},ec{\mathsf{x}}) \mathsf{J}_{
u}(\mathbf{0}) \right>$$

 HVP contribution to a_μ [Bernecker and Meyer, Eur.Phys.J. A47, 148 (2011); Feng *et al.* Phys.Rev. D88, 034505 (2013)]

$$a_{\mu} = \sum_{t} w_t C_{ii}(t)$$
 $i = 0, 1, 2$

• Ansatz for $\mathcal{O}(\alpha)$ -correction to correlator

$$\delta \mathsf{C}(\mathsf{t}) = (\mathsf{c}_1 + \mathsf{c}_0 \mathsf{t}) \mathrm{e}^{-\mathsf{E}\mathsf{t}}$$

- lowest lying state w/o QED $\pi\pi$
- Iowest lying state with QED πγ
 → QED_L: photon has one unit of momentum
- \blacktriangleright fit data to ansatz with c_0 and c_1 as paramters
- \blacktriangleright vary **E** between $\pi\gamma$ and $\pi\pi \rightarrow$ systematic error
- result light quarks

$$a_{\mu}^{ ext{QED},\ell} = 5.9(5.7)(1.7) imes 10^{-10}$$

results strange quark

$${
m a}_{\mu}^{ ext{QED}, ext{s}} = -0.0149(9)(31) imes 10^{-10}$$

([D. Giusti et al., JHEP 10, 157 (2017)] ${
m a}_{\mu}^{
m QED,s}=-0.018(11) imes10^{-10})$

connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$

- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- ► disconnected a^{QED, disc}_µ = -6.9(2.1)(2.7) × 10⁻¹⁰ using data generated for [T. Blum *et al.* Phys. Rev. Lett. 118, 022005 (2017)]

- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- ► disconnected a^{QED, disc}_µ = -6.9(2.1)(2.7) × 10⁻¹⁰ using data generated for [T. Blum *et al.* Phys. Rev. Lett. 118, 022005 (2017)]
- ▶ at least 1/N_c suppressed

strong Isospin Breaking Corrections to the HVP

Ansatz

$$\delta \mathsf{C}(\mathsf{t}) = (\mathsf{c}_1 + \mathsf{c}_0 \mathsf{t}) \mathsf{e}^{-\mathsf{E} \mathsf{t}}$$

▶ lowest lying state $\pi\pi$

result

$$a_{\mu}^{
m sIB} = 10.6(4.3)(6.8) imes 10^{-10}$$

([B. Chakraborty et al. Phys. Rev. Lett. 120 152001 (2018)] $a_{\mu}^{
m slB}=9.0(2.3) imes10^{-10})$

Outline

Motivation

Including Isospin Breaking effects on the lattice

IB Corrections to HVP at the physical point

Finite Volume Corrections for HVP

Summary

QED Finite Volume Corrections

- ▶ QED (massless photons) in a finite box with length L → finite volume (FV) corrections
- QCD: finite volume corrections $\sim e^{-m_{\pi}L}$
- QED: finite volume corrections \sim $^{1}/L^{n}$
- can be studied using effective theory, i.e. scalar QED for mesons
- ▶ e.g. meson masses with QED_L [S. Borsanyi et al. Science 347 (2015) 1452]

$$\mathsf{m^2(L)}\sim\mathsf{m^2}\left\{1-\mathsf{q^2}\alpha\left[\frac{\kappa}{\mathsf{mL}}\left(1+\frac{2}{\mathsf{mL}}\right)\right]\right\}+\mathcal{O}\left(\frac{1}{\mathsf{L^3}}\right)$$

with $\kappa = 2.837297$

- universal up to $\mathcal{O}\left(\frac{1}{L^2}\right)$
- Figure (2. Fodor *et al.* Phys. Rev. Lett. 117 (2016) 082001] $\mathcal{O}\left(\frac{1}{L^3}\right)$ negligible within errors
- ▶ QED corrections to decay amplitudes [V. Lubicz et al. Phys. Rev. D95 (2017) 034504]

QED Finite Volume Corrections for HVP

- \blacktriangleright analytical calculation for HVP \rightarrow 2-loop
- lattice scalar QED

 \rightarrow quicker way/cross check for analytical result

Leading contribution to HVP in effective theory is given by two-pion contribution

- QED correction \rightarrow expansion in α
- insertion of stochastic photon fields
- calculate scalar propagators using Fast Fourier Transform (FFT)

Check: FV for hadron masses

- QED correction to meson masses as check
- scalar propagator at $\mathcal{O}(\alpha)$

results [J. Harrison et al., Proceedings Lattice 2017]

▶ analytical result from [S. Borsanyi et al. Science 347 (2015) 1452], not a fit

Results QED Finite Volume Corrections for HVP

[Plots by T. Janowski]

numerical results

- lattice scalar QED calculation [J. Harrison, ...]
- Iattice PT (vegas) [T. Janowski, ...]
- analytical results [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, ...]

Outline

Motivation

Including Isospin Breaking effects on the lattice

IB Corrections to HVP at the physical point

Finite Volume Corrections for HVP

Summary

Summary

- \blacktriangleright Lattice calculations with precision of $\lesssim 1\%$ require inclusion of isospin breaking and QED effects
- challenges for including QED on the lattice
 - photon zero mode [Talk by A. Patella]
 - large finite volume corrections
 - IR divergences for some quantities like kaon/pion decay rate [Talk by F. Sanfilippo]
- comparison stochastic vs perturbative method
- First calculation for IB corrections to HVP at the physical point

Summary

- \blacktriangleright Lattice calculations with precision of $\lesssim 1\%$ require inclusion of isospin breaking and QED effects
- challenges for including QED on the lattice
 - photon zero mode [Talk by A. Patella]
 - large finite volume corrections
 - IR divergences for some quantities like kaon/pion decay rate [Talk by F. Sanfilippo]
- comparison stochastic vs perturbative method
- First calculation for IB corrections to HVP at the physical point

Thank you!

Outline

Motivation

Including Isospin Breaking effects on the lattice

IB Corrections to HVP at the physical point

Finite Volume Corrections for HVP

Summary

Backup

Results HVP window method - total

see [C. Lehner, V.G. et al. arXiv:1801.07224]

$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.2)_{\rm A}(0.2)_{\rm Z}$	$649.7(14.2)_{S}(2.8)_{C}(3.7)_{V}(1.5)_{A}(0.4)_{Z}(0.1)_{E48}(0.1)_{E64}$
$a_{\mu}^{s, \text{ conn, isospin}}$	$27.0(0.2)_{\rm S}(0.0)_{\rm C}(0.1)_{\rm A}(0.0)_{\rm Z}$	$53.2(0.4)_{\rm S}(0.0)_{\rm C}(0.3)_{\rm A}(0.0)_{\rm Z}$
$a_{\mu}^{c, \text{ conn, isospin}}$	$3.0(0.0)_{\rm S}(0.1)_{\rm C}(0.0)_{\rm Z}(0.0)_{\rm M}$	$14.3(0.0)_{\rm S}(0.7)_{\rm C}(0.1)_{\rm Z}(0.0)_{\rm M}$
$a_{\mu}^{\text{uds, disc, isospin}}$	-1.0(0.1)s(0.0)c(0.0)v(0.0)A(0.0)z	-11.2(3.3)s(0.4)v(2.3)L
$a_{\mu}^{\text{QED, conn}}$	$0.2(0.2)_{\rm S}(0.0)_{\rm C}(0.0)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}$	$5.9(5.7)_{\rm S}(0.3)_{\rm C}(1.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(1.1)_{\rm E}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_{\rm S}(0.0)_{\rm C}(0.0)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}$	$-6.9(2.1)_{S}(0.4)_{C}(1.4)_{V}(0.0)_{A}(0.0)_{Z}(1.3)_{E}$
a_{μ}^{SIB}	$0.1(0.2)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E48}$	$10.6(4.3)_{\rm S}(0.6)_{\rm C}(6.6)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.3)_{\rm E48}$
$a_{\mu}^{\text{udsc, isospin}}$	$231.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm M}$	$705.9(14.6)_{\rm S}(2.9)_{\rm C}(3.7)_{\rm V}(1.8)_{\rm A}(0.4)_{\rm Z}(2.3)_{\rm L}(0.1)_{\rm E48}$
		$(0.1)_{E64}(0.0)_{M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$9.5(7.4)_{\rm S}(0.7)_{\rm C}(6.9)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.7)_{\rm E}(1.3)_{\rm E48}$
$a_{\mu}^{\text{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
<i>a</i> _µ	$692.5(1.4)_{\rm S}(0.2)_{\rm C}(0.2)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$715.4(16.3)_{\rm S}(3.0)_{\rm C}(7.8)_{\rm V}(1.9)_{\rm A}(0.4)_{\rm Z}(1.7)_{\rm E}(2.3)_{\rm L}$
	$(0.0)_{\rm b}(0.1)_{\rm c}(0.0)_{\overline{\rm S}}(0.0)_{\overline{\rm Q}}(0.0)_{\rm M}(0.7)_{\rm RST}(2.1)_{\rm RSY}$	$(1.5)_{E48}(0.1)_{E64}(0.3)_{b}(0.2)_{c}(1.1)_{\overline{S}}(0.3)_{\overline{Q}}(0.0)_{M}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

Tuning the quark masses

isospin symmetric calculation [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

$$\begin{split} m_\ell &= 0.0006979(81) \\ m_s &= 0.03580(16) \end{split}$$

tune (u,d,s) masses to reproduce experimental π⁺, K⁺ and K₀ mass (and check π⁰ mass), fix lattice spacing using Ω⁻

$$\begin{split} \Delta m_u &= 0.00050(1) \\ \Delta m_d &= -0.00050(1) \\ \Delta m_s &= -0.0002(2) \end{split}$$

ratio of quark masses

$$\frac{m_d}{m_u} = 0.449(22)$$

Coulomb gauge

projector for photon fields [Borsanyi et al., Science 347 (2015) 1452-1455]

$$(\mathsf{P}_{\mathsf{C}})_{\mu\nu} = \delta_{\mu\nu} - \left|\vec{\hat{\mathsf{k}}}\right|^{-2} \hat{\mathsf{k}}_{\mu} \left(0, \vec{\hat{\mathsf{k}}}\right)_{\nu} \quad \text{with } \tilde{\mathsf{A}}_{\mu}^{\mathsf{Coul}}(\mathsf{k}) = (\mathsf{P}_{\mathsf{C}})_{\mu\nu} \tilde{\mathsf{A}}_{\nu}^{\mathsf{Feyn}}(\mathsf{k})$$

with

$$\hat{\mathbf{k}} = 2\sin\left(\frac{\mathbf{k}_{\mu}}{2}\right)$$

Coulomb gauge photon propagator

$$\Delta_{\mu\nu}^{\text{Coul}}(\mathbf{x} - \mathbf{y}) = \begin{cases} \frac{1}{N} \sum_{k} \frac{1}{\hat{k}^{2}} \left[\delta_{ij} - \frac{1}{\hat{k}^{2}} \, \hat{\mathbf{k}}_{i} \, \hat{\mathbf{k}}_{j} \right] \, \mathbf{e}^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \mathbf{e}^{i\mathbf{k}(\hat{\mu} - \hat{\nu})/2} & \mu = i, \nu = j \\ \frac{1}{N} \sum_{k} \frac{1}{\hat{k}^{2}} \, \mathbf{e}^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \mathbf{e}^{i\mathbf{k}(\hat{\mu} - \hat{\nu})/2} & \mu = 0, \nu = 0 \\ \mathbf{0} & \text{otherwise} \end{cases}$$

\mathbf{a}_{μ} : Experiment vs. Theory

•
$$a_{\mu} = (g_{\mu} - 2)/2$$

 \blacktriangleright measured and calculated very precisely —> test of the Standard Model

experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

$${
m a}_{\mu}=11659208.9(5.4)(3.3) imes 10^{-10}$$

Standard Model

 $\begin{array}{ll} \mbox{em} & (11658471.895 \pm 0.008) \times 10^{-10} & \mbox{[Kinoshita et al., Phys.Rev. Lett. 109, 11808 (2012)]} \\ \mbox{weak} & (15.36 \pm 0.10) \times 10^{-10} & \mbox{[Gendinger et al., Phys.Rev. D88, 053005 (2013)]} \\ \mbox{HVP} & (692.3 \pm 4.2 \pm 0.3) \times 10^{-10} & \mbox{[Davier et al., Eur.Phys.J. C71, 1515 (2011)]} \\ \mbox{HVP}(\alpha^3) & (-9.84 \pm 0.06) \times 10^{-10} & \mbox{[Hagiwara et al., J.Phys. G38, 085003 (2011]]} \\ \mbox{LbL} & (10.5 \pm 2.6) \times 10^{-10} & \mbox{[Prades et al., Adv.Ser.Direct.High Energy Phys. 20, 303 (2009)]} \end{array}$

• Comparison of theory and experiment: 3.6σ deviation

$$\Delta a_{\mu} = a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{SM}} = 28.8(6.3)^{ ext{Exp}}(4.9)^{ ext{SM}} imes 10^{-10}$$

new physics?

The zero-mode of the photon field

- shift symmetry of the of the photon action A_µ (x) → A_µ (x) + c_µ → remove by fixing the zero-mode of the photon field
- different prescriptions of QED:
- QED_{TL}: remove the zero-mode of the photon field, i.e. $\tilde{A}_{\mu}(k=0) = 0$ [A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]
- QED_L: remove all the spatial zero-modes, i.e. $\tilde{A}_{\mu}(k_0, \vec{k} = 0) = 0$ [S. Uno and M. Hayskawa, Prog. Theor. Phys. 120, 413 (2008)]
- \blacktriangleright QED_m: use a massive photon and take $m_\gamma \rightarrow 0$ [M. Endres et al.,Phys. Rev. Lett. 117 (2016) 072002]
- QED_C: C* boundary conditions in spatial direction, i.e. fields are periodic up to charge conjugation [B. Luchini et al. JHEP 02 (2016) 076]
- ▶ for detailed discussion on different prescriptions of QED see e.g. [A. Patella 1702.03857]

$\mathsf{K} ightarrow \ell u_\ell$ with QED

- ▶ formulated in [N. Carrasco et al. Phys.Rev. D91 (2015) no.7, 074506]
- ▶ first results in [D. Guisti et al. Phys.Rev.Lett. 120 (2018) no.7, 072001]
- \blacktriangleright contributions from photon emitted from hadron and absorbed by charged lepton \rightarrow hadronic and leptonic part can no longer be factorised
- infrared (IR) divergences
 - → canceled when combining contributions from virtual and real photons [F. Bloch and A. Nordsieck, Phys.Rev. 52 (1937) 54]
 - \rightarrow perturbative method for QED

