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Motivation

Motivation

I calculation of several quantities in lattice QCD reaching precision of . 1%

I e.g. flavor physics
12. CKM quark-mixing matrix 15
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Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

ρ̄ = 0.124+0.019
−0.018 , η̄ = 0.356 ± 0.011 . (12.26)

These values are obtained using the method of Refs. [6,104]. Using the prescription
of Refs. [111,128] gives λ = 0.22496 ± 0.00048, A = 0.823 ± 0.013, ρ̄ = 0.141 ± 0.019,
η̄ = 0.349 ± 0.012 [129]. The fit results for the magnitudes of all nine CKM elements are

VCKM =




0.97434+0.00011
−0.00012 0.22506 ± 0.00050 0.00357 ± 0.00015

0.22492 ± 0.00050 0.97351 ± 0.00013 0.0411 ± 0.0013
0.00875+0.00032

−0.00033 0.0403 ± 0.0013 0.99915 ± 0.00005


 , (12.27)

and the Jarlskog invariant is J = (3.04+0.21
−0.20) × 10−5.

Figure 12.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region.

October 6, 2016 11:46

[PDG] [FLAG]

I e.g. Hadronic Vacuum Polarization contribution to aµ aiming at 1%
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Motivation

Motivation

I calculations usually done in isospin symmetric limit (treat u and d as equal)

I two sources of isospin breaking effects
I different masses for up- and down quark (of O((md − mu)/ΛQCD))
I Quarks have electrical charge (of O(α))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I Status of calculations including IB corrections on the lattice
I IB corrections to hadron masses

[e.g. S. Borsanyi et al. Phys. Rev. Lett. 111 (2013) 252001; G. M. de Divitiis et al. Phys. Rev. D87 (2013) 114505; S. Borsanyi et
al.Science 347 (2015) 1452; R. Horsley et al. J. Phys. G43 (2016) 10LT02; R. Horsley et al. JHEP 04 (2016) 093; S. Basek et al. PoS
LATTICE2015 (2016) 259; Z. Fodor et al. Phys. Rev. Lett. 117 (2016) 082001; D. Giusti et al. Phys.Rev. D95 (2017) 114504; V.G.
et al.,JHEP 09, 153 (2017)]

I First calculations of IB corrections to hadronic vacuum polarization
[V.G. et al.,JHEP 09, 153 (2017); D. Giusti et al., JHEP 10 157 (2017); B. Chakraborty et al. Phys. Rev. Lett. 120 152001 (2018);

C. Lehner, V.G. et al. arXiv:1801.07224], [see also talk by M. Della Morte]

I QED corrections to pion/kaon decay rates
[N. Carrasco et al. Phys. Rev. D91 (2015) 074506; V. Lubicz et al. Phys. Rev. D95 (2017) 034504; D. Guisti et al. Phys.Rev.Lett. 120

(2018) no.7, 072001], [see also talk by F. Sanfilippo]

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 2 / 31



Motivation

Outline

I Including Isospin Breaking effects on the lattice
I stochastic method

I perturbative method

I direct comparison of results [V.G. et al.,JHEP 09, 153 (2017)]

I meson masses
I HVP

I strong IB

I IB Corrections to HVP at the physical point [C. Lehner, V.G. et al. arXiv:1801.07224]

I Finite volume corrections for HVP

I Summary
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Including Isospin Breaking effects on the lattice

QED on the lattice

I Euclidean path integral including QED

〈O〉 =
1

Z

∫
D[Ψ,Ψ]D[U]D[A] O e−SF[Ψ,Ψ,U,A] e−SG[U] e−Sγ [A]

I non-compact photon action

Sγ [A] =
a4

4

∑

x

∑

µ,ν

(∂µAν (x)− ∂νAµ (x))2

I two approaches for including QED

I stochastic QED using U(1) gauge configurations
[A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]

I perturbative QED by expanding the path integral in α
[RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

〈O〉 = 〈O〉0 +
1

2
e2 ∂2

∂e2
〈O〉

∣∣∣∣∣
e=0

+O(α2)
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Including Isospin Breaking effects on the lattice

stochastic method

I Feynman gauge

SFeyn
γ [A] = Sγ[A] +

1

2

∑

x

(∑

µ

∂µAµ(x)

)2

= −
1

2

∑

x

∑

µ

Aµ(x)∂2Aµ(x)

I in momentum space

SFeyn
γ [A] =

1

2N

∑

k,
#»
k 6=0

k̂2
∑

µ

∣∣∣Ãµ(k)
∣∣∣
2

k̂µ = 2 sin

(
kµ

2

)

with N number of lattice sites

I remove photon zero mode
(e.g. spatial zero-modes→ QEDL [ S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)])

I draw Ãµ(k) from Gaussian distribution with variance 2N/k̂2

I Fourier Transform to position space
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Including Isospin Breaking effects on the lattice

stochastic method

I multiply SU(3) gauge links with U(1) photon fields

Uµ(x)→ eieAµ(x)Uµ(x)

I calculate hadronic observable as without QED

I remove O(e) noise by averaging over +e and −e
[T. Blum et al., Phys. Rev. D76 (2007) 114508]

I electro quenched approximation
→ sea quarks electrically neutral
→ QED configurations generated independently of QCD configurations

I unquenched calculation
→ generate combined QED+QCD configurations

I QED correction to all orders in α
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Including Isospin Breaking effects on the lattice

perturbative method

I expand path integral in α [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

〈O〉 = 〈O〉0 +
1

2
e2 ∂2

∂e2
〈O〉

∣∣∣∣∣
e=0

+O(α2)

I at O(α) for mesonic two-point functions

0

x

y

z 0

x y

z 0
x z

� conserved vector current, N tadpole operator

I electro-quenched: no disconnected diagrams like

I e.g. photon exchange for a charged Kaon

C(z0) =
∑

µ,ν

∑

z

∑

x,y

Tr
[
S(z, x)Γc

µS(x, 0)γ5S(0, y)Γc
νS(y, z)γ5

]
∆µν(x− y)
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Including Isospin Breaking effects on the lattice

perturbative method

I photon propagator Feynman gauge

∆µν(x− y) = δµν
1

N

∑

k,
#»
k 6=0

eik·(x−y)

k̂2

I remove all spatial zero modes→ QEDL
[ S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413–441 (2008)]

0

x

y

z 0

x y

z 0
x z

I calculate diagrams using sequential propagators

I factorize photon propagator ∆µν(x− y) = f(x)g(y)
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Including Isospin Breaking effects on the lattice

perturbative method

I method 1:
〈
η(u)η†(y)

〉
η

= δuy

∆µν(x− y) =
〈∑

u

∆µν(x− u)η(u)η†(y)
〉
η

=
〈

∆̃µν(x)η†(y)
〉
η

→ sequential sources for every combination of {µ, ν}, e.g.

Γc
µ ∆̃µν(x) Γc

ν η
†(y)

→ 17 inversions in Feynman gauge

I method 2:
〈
ξσ(u)ξ†ν(y)

〉
ξ

= δuyδσν [RM123, Phys.Rev. D87, 114505 (2013)]

∆µν(x− y) =
〈∑

u

∑

σ

∆µσ(x− u)ξσ(u)ξ†ν(y)
〉
ξ

=
〈

∆̂µ(x)ξ†ν(y)
〉
ξ

→ sequential sources summed over µ or ν, e.g.∑
µ

Γc
µ ∆̂µ(x)

∑
ν

Γc
ν ξ

†
ν(y)

→ 5 inversions
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Including Isospin Breaking effects on the lattice

perturbative method
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Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method

QED corrections to all orders in α
once the stochastic U(1) fields are generated, calculation proceeds without
QED→ computationally cheaper than perturbative method
contributions from different diagrams cannot be distinguished
unqenching requires new gauge configurations, combined QED + QCD

I perturbative method

QED corrections at fixed order in O(α)
calculation more involved, requires three- and four-point functions, convolution
with photon propagator→ more expensive than stochastic method
contributions from different diagrams, e.g. photon exchange, self energy, can
be distinguished
unqenching requires additional quark-disconnected diagrams

direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al. arXiv:1706.05293]

→ for our setup: stochastic method gives ≈ 1.5 times smaller statistical
error for same numerical cost

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 10 / 31



Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method
I QED corrections to all orders in α

once the stochastic U(1) fields are generated, calculation proceeds without
QED→ computationally cheaper than perturbative method
contributions from different diagrams cannot be distinguished
unqenching requires new gauge configurations, combined QED + QCD

I perturbative method
I QED corrections at fixed order in O(α)

calculation more involved, requires three- and four-point functions, convolution
with photon propagator→ more expensive than stochastic method
contributions from different diagrams, e.g. photon exchange, self energy, can
be distinguished
unqenching requires additional quark-disconnected diagrams

direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al. arXiv:1706.05293]

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 10 / 31



Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method
I QED corrections to all orders in α
I once the stochastic U(1) fields are generated, calculation proceeds without

QED→ computationally cheaper than perturbative method
contributions from different diagrams cannot be distinguished
unqenching requires new gauge configurations, combined QED + QCD

I perturbative method
I QED corrections at fixed order in O(α)
I calculation more involved, requires three- and four-point functions, convolution

with photon propagator→ more expensive than stochastic method
contributions from different diagrams, e.g. photon exchange, self energy, can
be distinguished
unqenching requires additional quark-disconnected diagrams

direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al. arXiv:1706.05293]

→ for our setup: stochastic method gives ≈ 1.5 times smaller statistical
error for same numerical cost

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 10 / 31



Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method
I QED corrections to all orders in α
I once the stochastic U(1) fields are generated, calculation proceeds without

QED→ computationally cheaper than perturbative method
I contributions from different diagrams cannot be distinguished

unqenching requires new gauge configurations, combined QED + QCD

I perturbative method
I QED corrections at fixed order in O(α)
I calculation more involved, requires three- and four-point functions, convolution

with photon propagator→ more expensive than stochastic method
I contributions from different diagrams, e.g. photon exchange, self energy, can

be distinguished
unqenching requires additional quark-disconnected diagrams

direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al. arXiv:1706.05293]

→ for our setup: stochastic method gives ≈ 1.5 times smaller statistical
error for same numerical cost

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 10 / 31



Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method
I QED corrections to all orders in α
I once the stochastic U(1) fields are generated, calculation proceeds without

QED→ computationally cheaper than perturbative method
I contributions from different diagrams cannot be distinguished
I unqenching requires new gauge configurations, combined QED + QCD

I perturbative method
I QED corrections at fixed order in O(α)
I calculation more involved, requires three- and four-point functions, convolution

with photon propagator→ more expensive than stochastic method
I contributions from different diagrams, e.g. photon exchange, self energy, can

be distinguished
I unqenching requires additional quark-disconnected diagrams

direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al. arXiv:1706.05293]

→ for our setup: stochastic method gives ≈ 1.5 times smaller statistical
error for same numerical cost

Vera Gülpers (University of Southampton) Frontiers in Lattice QFT May 22, 2018 10 / 31



Including Isospin Breaking effects on the lattice

Stochastic vs Perturbative method

I stochastic method
I QED corrections to all orders in α
I once the stochastic U(1) fields are generated, calculation proceeds without

QED→ computationally cheaper than perturbative method
I contributions from different diagrams cannot be distinguished
I unqenching requires new gauge configurations, combined QED + QCD

I perturbative method
I QED corrections at fixed order in O(α)
I calculation more involved, requires three- and four-point functions, convolution

with photon propagator→ more expensive than stochastic method
I contributions from different diagrams, e.g. photon exchange, self energy, can

be distinguished
I unqenching requires additional quark-disconnected diagrams

I direct comparison of results and statistical errors for QED corrections to
meson masses and hadronic vacuum polarization [V.G. et al., JHEP 1709 (2017) 153 ]
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Including Isospin Breaking effects on the lattice

Direct Comparison of Results - Meson Masses

I Nf = 2 + 1 Domain Wall Fermions, 243 × 64 lattice, a−1 = 1.78 GeV

I isospin symmetric pion mass mπ = 340 MeV

I QED correction to effective mass:
I stochastic:

δmcosh
eff (t) = meff(t)− m0

eff(t)

I perturbative:

δmratio
eff (t) =

δC(t)

C0(t)
− δC(t + 1)

C0(t + 1)
(×corr for periodic boundary)
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Including Isospin Breaking effects on the lattice

Comparison of statistical errors

I computational cost
• perturbative: 17 inversions per quark flavor for single-µ insertion

5 inversions per quark flavor for summed-µ insertion
• stochastic: 3 inversions per quark flavor

I statistical error ∆ of QED contribution to effective Kaon mass

I scaled by
√

# inversions (equal cost comparison)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

∆

p

e

r

t

/∆

s

t

o



h

×
√

N

p

e

r

t

/N

s

t

o



h

t

ost perturbative single-µ: 17 inversions

ost perturbative summed-µ: 5 inversions

ost stohasti: 3 inversions

equal ost omparison

single-µ
summed-µ

stochastic method gives 1.5− 2 times smaller statistical errors for same cost
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Including Isospin Breaking effects on the lattice

Perturbative Expansion HVP

I Vector-Vector correlation function

Cµν(x) = 〈Vµ(x)Vν(0)〉

I HVP tensor
Πµν(Q) =

∑

x

e−iQ·xCµν(x)

I conserved vector current depends on link variables

Uµ(x)→ eieAµ(x)Uµ(x) and thus Vc
µ(x)→ Vc,e

µ (x)

I perturbative expansion
〈

Vc,e
µ (x)V`ν(0)

〉
=
〈

Vc
µ(x)V`ν(0)

〉
0

+
1

2
e2 ∂2

∂e2

〈
Vc,e
µ (x)V`ν(0)

〉∣∣∣∣∣
e=0

I two additional types of diagrams
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Including Isospin Breaking effects on the lattice

Direct Comparison of Results - HVP

I QED correction to hadronic vacuum polarisation
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I δaµ < 1% for u quarks

I comparision of statistical errors
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Including Isospin Breaking effects on the lattice

“Combining” stochastic and perturbative method

I write photon propagator as

∆µν(x− y) = 〈Aµ(x)Aν(y)〉

I use stochastic photon fields Aµ(x) to estimate ∆µν(x− y) [D. Giusti et al.

Phys.Rev. D95 (2017) 114504]

I quark - photon vertex insertions of

Γc
µAµ(x)

I path integral

〈O〉 =
1

Z

∫
D[Ψ,Ψ]D[U]D[A] O e−SF[Ψ,Ψ,U,A] e−SG[U] e−Sγ [A]

I using the same stochastic photon fields as for stochastic method gives exact
O(α)-truncation of results from stochastic method

I 4 inversions
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Including Isospin Breaking effects on the lattice

strong Isospin Breaking

I different bare quark masses for up- and down quark

I expansion in ∆m = (mu −md) [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

〈O〉mu 6=md
= 〈O〉mu=md

+ ∆m
∂

∂m
〈O〉

∣∣∣∣
mu=md

+O
(
∆m2

)

with ∂

∂m
〈O〉

∣∣∣∣
mu=md

= 〈OS〉mu=md

I scalar current S =
∑
x
ψ(x)ψ(x)

S

I quark mass tuning at the physical point, e.g. by fixing masses of charged
pion, charged and neutral kaon
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IB Corrections to HVP at the physical point

Muon aµ and the hadronic vacuum polarisation (HVP)

I experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

aµ = 11659208.9(5.4)(3.3)× 10−10

I Standard Model [PDG]

aµ = 11659180.3(0.1)(4.2)(2.6)× 10−10

I Comparison of theory and experiment: 3.6σ deviation

I largest error on SM estimate from HVP

µ µ

I current best estimate from e+e− → hadrons [Davier et al., Eur.Phys.J. C71, 1515 (2011)]

(692.3± 4.2± 0.3)× 10−10
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IB Corrections to HVP at the physical point

HVP from the R-ratio↔ Lattice

I see also talks on g-2 yesterday

ahvpµ · 1010
500 600 700

e+ e− → hadrons

RBC/UKQCD 2018

BMW 2017

HPQCD 2016

ETMC 2013

CLS Mainz 2017

I result using R-ratio ahvp
µ = (692.3± 4.2± 0.3)× 10−10

I lattice result to be competitive with R-ratio requires precision of . 1%
→ Isospin Breaking Corrections
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IB Corrections to HVP at the physical point

Status IB corrections to HVP

I Isospin Breaking corrections to HVP

I QED corrections to HVP:
I unphysical quark masses [V.G. et al.,JHEP 09, 153 (2017)]

I strange, charm; extrapolated to physical quark masses [D. Giusti et al., JHEP 10,

157 (2017)]

I directly at physical quark masses [C. Lehner, V.G. et al. arXiv:1801.07224]

I strong IB corrections to HVP:
I unphysical quark masses [V.G. et al., JHEP 09, 153 (2017)]

I directly at physical quark masses, Nf = 1 + 1 + 1 + 1 [B. Chakraborty et al. Phys.

Rev. Lett. 120 152001 (2018)]

I directly at physical quark masses [C. Lehner, V.G. et al. arXiv:1801.07224]
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IB Corrections to HVP at the physical point

IB corrections to HVP at physical point

I see [C. Lehner, V.G. et al. arXiv:1801.07224]

I Nf = 2 + 1 Möbius DWF, 483 × 96 lattice, a−1 = 1.730(4) GeV
[T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

I IB corrections from expansion around isospin symmetric calculation

C(t) = C0(t) + αCQED(t) +
∑

f

∆mfC
∆mf (t)

I QED corrections using perturbative method with stochastic photon fields

I isospin symmetric calculation using quark masses determined without QED
[T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

I physical quark masses including QED:
I tune (u, d, s) quark masses to physical values including QED
→ in addition: fix lattice spacing with QED

I use these tuned masses and perturbative expansion in mass
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IB Corrections to HVP at the physical point

Tuning the quark masses

I tune (u,d,s) masses to reproduce experimental π+, K+ and K0 mass (and
check π0 mass)

a mexp
π+ =

[
m̂π+ + δQEDmπ+ + (∆md + ∆mu) δsIB,`mπ+

]

a mexp
K+ =

[
m̂K+ + δQEDmK+ + ∆mu δ

sIB,`mK+ + ∆ms δ
sIB,smK+

]

a mexp
K0 =

[
m̂K0 + δQEDmK0 + ∆md δ

sIB,`mK0 + ∆ms δ
sIB,smK0

]

I m̂H: isospin symmetric mass of H, δQEDmH: QED correction to mass of H

I δsIB,fmH from

H

f

H

f
S

I lattice spacing: fix another mass including QED
→ here: Omega-Baryon

a→ a(∆ms) =
(
m̂Ω + δQEDmΩ + 3 ∆ms δ

sIB,smΩ

)
/mexp

Ω
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IB Corrections to HVP at the physical point

QED corrections to the HVP
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I connected
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I vector two-point function

Cµν(t) =
∑

#»x

〈Jµ(t, #»x )Jν(0)〉

I HVP contribution to aµ [Bernecker and Meyer, Eur.Phys.J. A47, 148 (2011); Feng et al.

Phys.Rev. D88, 034505 (2013)]

aµ =
∑

t

wtCii(t) i = 0, 1, 2

−1
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4
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w
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I Ansatz for O(α)-correction to correlator

δC(t) = (c1 + c0t)e−Et

I lowest lying state w/o QED ππ

I lowest lying state with QED πγ
→ QEDL: photon has one unit of momentum

I fit data to ansatz with c0 and c1 as paramters

I vary E between πγ and ππ → systematic error

I result light quarks

aQED,`
µ = 5.9(5.7)(1.7)× 10−10

I results strange quark

aQED,s
µ = −0.0149(9)(31)× 10−10

([D. Giusti et al., JHEP 10, 157 (2017)] aQED,s
µ = −0.018(11)× 10−10)
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IB Corrections to HVP at the physical point

QED corrections to the HVP
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I connected aQED, conn
µ = 5.9(5.7)(1.7)× 10−10
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I connected aQED, conn
µ = 5.9(5.7)(1.7)× 10−10

I disconnected aQED, disc
µ = −6.9(2.1)(2.7)× 10−10

using data generated for [T. Blum et al. Phys. Rev. Lett. 118, 022005 (2017)]
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IB Corrections to HVP at the physical point

QED corrections to the HVP

I connected aQED, conn
µ = 5.9(5.7)(1.7)× 10−10

I disconnected aQED, disc
µ = −6.9(2.1)(2.7)× 10−10

using data generated for [T. Blum et al. Phys. Rev. Lett. 118, 022005 (2017)]

I at least 1/Nc suppressed
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IB Corrections to HVP at the physical point

strong Isospin Breaking Corrections to the HVP

−0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20

C
ii
(t

)

t

mass orretion

I Ansatz
δC(t) = (c1 + c0t)e−Et

I lowest lying state ππ

I result
asIB
µ = 10.6(4.3)(6.8)× 10−10

([B. Chakraborty et al. Phys. Rev. Lett. 120 152001 (2018)] asIB
µ = 9.0(2.3)× 10−10)
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Finite Volume Corrections for HVP

QED Finite Volume Corrections

I QED (massless photons) in a finite box with length L
→ finite volume (FV) corrections

I QCD: finite volume corrections ∼ e−mπL

I QED: finite volume corrections ∼ 1/Ln

I can be studied using effective theory, i.e. scalar QED for mesons

I e.g. meson masses with QEDL [S. Borsanyi et al. Science 347 (2015) 1452]

m2(L) ∼ m2

{
1− q2α

[
κ

mL

(
1 +

2

mL

)]}
+O

(
1

L3

)

with κ = 2.837297

I universal up to O
(

1
L2

)
I [Z. Fodor et al. Phys. Rev. Lett. 117 (2016) 082001] O

(
1
L3

)
negligible within errors

I QED corrections to decay amplitudes [V. Lubicz et al. Phys. Rev. D95 (2017) 034504]
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Finite Volume Corrections for HVP

QED Finite Volume Corrections for HVP

I analytical calculation for HVP→ 2-loop

I lattice scalar QED
→ quicker way/cross check for analytical result

I Leading contribution to HVP in effective theory is given by two-pion
contribution

I QED correction→ expansion in α

I insertion of stochastic photon fields

I calculate scalar propagators using Fast Fourier Transform (FFT)
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Finite Volume Corrections for HVP

Check: FV for hadron masses

I QED correction to meson masses as check

I scalar propagator at O(α)

I results [J. Harrison et al., Proceedings Lattice 2017]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1/(m0L)

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

m
2

m
2

Scalar mass FV effect, L3 × 128, m0 = 0.2
1
4 L (m0 + 2

L )
Lattice

I analytical result from [S. Borsanyi et al. Science 347 (2015) 1452], not a fit
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Finite Volume Corrections for HVP

Results QED Finite Volume Corrections for HVP

[Plots by T. Janowski]
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I numerical results
I lattice scalar QED calculation [J. Harrison, . . .]

I lattice PT (vegas) [T. Janowski, . . .]

I analytical results [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, . . .]
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Summary

Summary

I Lattice calculations with precision of . 1% require inclusion of isospin
breaking and QED effects

I challenges for including QED on the lattice
I photon zero mode [Talk by A. Patella]

I large finite volume corrections
I IR divergences for some quantities like kaon/pion decay rate

[Talk by F. Sanfilippo]

I comparison stochastic vs perturbative method

I First calculation for IB corrections to HVP at the physical point

Thank you!
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Backup

Backup
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Backup

Results HVP window method - total

see [C. Lehner, V.G. et al. arXiv:1801.07224]

-25
-20
-15
-10
-5
 0
 5

 10
 15

0.5 1 1.5 2 2.5

´ 
10

-1
0

t1 / fm

aµ, SIBaµ, QEDaµ, uds, disc, isospinaµ, c, conn, isospinaµ, s, conn, isospin / 3
aµ, ud, conn, isospin / 40

42

4

a ud, conn, isospin
µ 202.9(1.4)S(0.2)C(0.1)V(0.2)A(0.2)Z 649.7(14.2)S(2.8)C(3.7)V(1.5)A(0.4)Z(0.1)E48(0.1)E64

a s, conn, isospin
µ 27.0(0.2)S(0.0)C(0.1)A(0.0)Z 53.2(0.4)S(0.0)C(0.3)A(0.0)Z

a c, conn, isospin
µ 3.0(0.0)S(0.1)C(0.0)Z(0.0)M 14.3(0.0)S(0.7)C(0.1)Z(0.0)M

a uds, disc, isospin
µ �1.0(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z �11.2(3.3)S(0.4)V(2.3)L

a QED, conn
µ 0.2(0.2)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E 5.9(5.7)S(0.3)C(1.2)V(0.0)A(0.0)Z(1.1)E

a QED, disc
µ �0.2(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E �6.9(2.1)S(0.4)C(1.4)V(0.0)A(0.0)Z(1.3)E

a SIB
µ 0.1(0.2)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E48 10.6(4.3)S(0.6)C(6.6)V(0.1)A(0.0)Z(1.3)E48

a udsc, isospin
µ 231.9(1.4)S(0.2)C(0.1)V(0.3)A(0.2)Z(0.0)M 705.9(14.6)S(2.9)C(3.7)V(1.8)A(0.4)Z(2.3)L(0.1)E48

(0.1)E64(0.0)M
a QED, SIB

µ 0.1(0.3)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E(0.0)E48 9.5(7.4)S(0.7)C(6.9)V(0.1)A(0.0)Z(1.7)E(1.3)E48

a R�ratio
µ 460.4(0.7)RST(2.1)RSY

aµ 692.5(1.4)S(0.2)C(0.2)V(0.3)A(0.2)Z(0.0)E(0.0)E48 715.4(16.3)S(3.0)C(7.8)V(1.9)A(0.4)Z(1.7)E(2.3)L
(0.0)b(0.1)c(0.0)S(0.0)Q(0.0)M(0.7)RST(2.1)RSY (1.5)E48(0.1)E64(0.3)b(0.2)c(1.1)S(0.3)Q(0.0)M

TABLE I. Individual and summed contributions to aµ multiplied by 1010. The left column lists results for the window method
with t0 = 0.4 fm and t1 = 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective
uncertainties are defined in the main text.

We furthermore propagate uncertainties of the lattice
spacing (A) and the renormalization factors ZV (Z). For
the quark-disconnected contribution we adopt the addi-
tional long-distance error discussed in Ref. [29] (L) and
for the charm contribution we propagate uncertainties
from the global fit procedure [22] (M). Systematic errors
of the R-ratio computation are taken from Ref. [1] and
quoted as (RSY). The neglected bottom quark (b) and
charm sea quark (c) contributions as well as e↵ects of
neglected QED (Q) and SIB (S) diagrams are estimated
as described in the previous section.

For the QED and SIB corrections, we assume domi-

nance of the low-lying ⇡⇡ and ⇡� states and fit C
(1)
QED(t)

as well as C
(1)
�mf

(t) to (c1 + c0t)e
�Et, where we vary c0

and c1 for fixed energy E. The resulting p-values are
larger than 0.2 for all cases and we use this functional
form to compute the respective contribution to aµ. For
the QED correction, we vary the energy E between the
lowest ⇡⇡ and ⇡� energies and quote the di↵erence as ad-
ditional uncertainty (E). For the SIB correction, we take
E to be the ⇡⇡ ground-state energy.

For the light quark contribution of our pure lattice re-
sult we use a bounding method [37] similar to Ref. [38]
and find that upper and lower bounds meet within errors
at t = 3.0 fm. We vary the ground-state energy that en-
ters this method [39] between the free-field and interact-
ing value [40]. For the 48I ensemble we find Efree

0 = 527.3
MeV, E0 = 517.4 MeV + O(1/L6) and for the 64I en-
semble we have Efree

0 = 536.1 MeV, E0 = 525.1 MeV
+ O(1/L6). We quote the respective uncertainties as
(E48) and (E64). The variation of ⇡⇡ ground-state en-
ergy on the 48I ensemble also enters the SIB correction
as described above.

Figure 5 shows our results for the window method with
t0 = 0.4 fm. While the partial lattice and R-ratio contri-
butions change by several 100 ⇥ 10�10, the sum changes
only at the level of quoted uncertainties. This provides
a non-trivial consistency check between the lattice and
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FIG. 5. We show results for the window method with t0 = 0.4
fm as a function of t1. The top panel shows the combined
aµ, the middle panel shows the partial contributions of the
lattice and R-ratio data, and the bottom shows the respective
uncertainties.

the R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the supplementary
material. The uncertainty of the current analysis is min-
imal for t1 = 1 fm, which we take as our main result
for the window method. For t0 = t1 we reproduce the
value of Ref. [1]. In Fig. 6, we show the t1-dependence
of individual lattice contributions and compare our re-
sults with previously published results in Fig. 7. Our
combined lattice and R-ratio result is more precise than
the R-ratio computation by itself and reduces the ten-
sion to the other R-ratio results. Results for di↵erent
window parameters t0 and t1 and a comparison of indi-
vidual components with previously published results are
provided as supplementary material.
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Backup

Tuning the quark masses

I isospin symmetric calculation [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

m` = 0.0006979(81)

ms = 0.03580(16)

I tune (u,d,s) masses to reproduce experimental π+, K+ and K0 mass (and
check π0 mass), fix lattice spacing using Ω−

∆mu = 0.00050(1)

∆md = −0.00050(1)

∆ms = −0.0002(2)

I ratio of quark masses
md

mu

= 0.449(22)
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Backup

Coulomb gauge

I projector for photon fields [Borsanyi et al., Science 347 (2015) 1452-1455]

(PC)µν = δµν −
∣∣∣

#»

k̂
∣∣∣
−2

k̂µ
(

0,
#»

k̂
)
ν

with ÃCoul
µ (k) = (PC)µν ÃFeyn

ν (k)

with

k̂ = 2 sin

(
kµ

2

)

I Coulomb gauge photon propagator

∆Coul
µν (x− y) =





1
N

∑
k

1
k̂2

[
δij − 1

#»

k̂ 2
k̂i k̂j

]
eik·(x−y)eik(µ̂−ν̂)/2 µ = i, ν = j

1
N

∑
k

1
#»

k̂ 2
eik·(x−y)eik(µ̂−ν̂)/2 µ = 0, ν = 0

0 otherwise
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Backup

aµ: Experiment vs. Theory

I aµ = (gµ − 2)/2

I measured and calculated very precisely −→ test of the Standard Model

I experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

aµ = 11659208.9(5.4)(3.3)× 10−10

I Standard Model

em (11658471.895± 0.008)× 10−10
[Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]

weak (15.36± 0.10)× 10−10
[Gnendinger et al., Phys.Rev. D88, 053005 (2013)]

HVP (692.3± 4.2± 0.3)× 10−10
[Davier et al., Eur.Phys.J. C71, 1515 (2011)]

HVP(α3) (−9.84± 0.06)× 10−10
[Hagiwara et al., J.Phys. G38, 085003 (2011)]

LbL (10.5± 2.6)× 10−10
[Prades et al.,Adv.Ser.Direct.High Energy Phys. 20, 303 (2009)]

I Comparison of theory and experiment: 3.6σ deviation

∆aµ = aexp
µ − aSM

µ = 28.8(6.3)Exp(4.9)SM × 10−10

I new physics?
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Backup

The zero-mode of the photon field

I shift symmetry of the of the photon action Aµ (x)→ Aµ (x) + cµ
→ remove by fixing the zero-mode of the photon field

I different prescriptions of QED:

I QEDTL: remove the zero-mode of the photon field, i.e. Ãµ(k = 0) = 0
[A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]

I QEDL: remove all the spatial zero-modes, i.e. Ãµ(k0,
#»

k = 0) = 0
[ S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)]

I QEDm: use a massive photon and take mγ → 0
[ M. Endres et al.,Phys. Rev. Lett. 117 (2016) 072002]

I QEDC: C∗ boundary conditions in spatial direction, i.e. fields are periodic up
to charge conjugation [ B. Luchini et al. JHEP 02 (2016) 076]

I for detailed discussion on different prescriptions of QED see e.g. [A. Patella 1702.03857]
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Backup

K→ `ν` with QED

I formulated in [N. Carrasco et al. Phys.Rev. D91 (2015) no.7, 074506]

I first results in [D. Guisti et al. Phys.Rev.Lett. 120 (2018) no.7, 072001]

I contributions from photon emitted from hadron and absorbed by charged
lepton→ hadronic and leptonic part can no longer be factorised

I infrared (IR) divergences
→ canceled when combining contributions from virtual and real photons
→ [F. Bloch and A. Nordsieck, Phys.Rev. 52 (1937) 54]

→ perturbative method for QED
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