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Introduction

Motivations and general introduction



Motivations

I In the real world up and down quarks have different masses and electric charges.

I Isospin-breaking effects are typically a few percent effects:

mu − md

Mp
' 0.3% αEM = 0.7%

Mn −Mp

Mn
' 0.1%

I From FLAG16 [Aoki et al., arXiv:1607.00299] and [PDG review, Rosner et al., 2016], [Cirigliano et al., Rev.

Mod. Phys. 84, 399 (2012)]

fπ± = 130.2(1.4) MeV err = 1% δχPT
QED (π− → `−ν̄) = 1.8%

fK± = 155.6(0.4) MeV err = 0.3% δχPT
QED (K− → `−ν̄) = 1.1%

f+(0) = 0.9704(24)(22) err = 0.5% δχPT
QED (K → π`ν̄) = [0.5, 3]%
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Two ways for QCD+QED on the lattice

I Expand observables with respect to αem and ∆mud analytically, and calculate the coefficients
of the expasion by simulating QCD only.

de Divitiis et al. (RM123), Leading isospin breaking effects on the lattice, Phys.Rev. D87 (2013) 11, 114505.

I Simulate QCD+QED on the lattice, typically at a larger value of αem and ∆mud and
extrapolate to physical values.

Borsanyi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455.



Sketching the RM123 method

QCD+QED action, assume only u and d for simplicity

SQ[C+E]D =

∫
x

 1

4g2
0

trG 2 +
1

4
F 2 +

∑
f =u,d

ψ̄f [ /D + mf
0 ]ψf + ie0Aµjµ


Dµ = ∂µ + iBµ jµ =

∑
f =u,d

qf ψ̄f γµψf

Physical observables can be expanded in powers of (the renormalized) αem and ∆mud . Notice

that the bare parameters depend on αem and ∆mud through the renormalization conditions, e.g.
g2

0 = g2
0 (αem,∆mud ).

e
−SQ[C+E]D = e−Siso

{
1− ie0

∫
x

Aµ(x)jµ(x)−
∫
x

 c0

4
trG 2(x) +

∑
f =u,d

∆mf
0ψ̄f ψf (x)

+

+
e2

0

2

∫
xy

Aµ(x)jµ(x)Aν(y)jν(y) + O(α3/2
em ) + O(∆m2

ud )

}



Sketching the RM123 method

e
−SQ[C+E]D = e−Siso

{
1− ie0

∫
x

Aµ(x)jµ(x)−
∫
x

 c0

4
trG 2(x) +

∑
f =u,d

∆mf
0ψ̄f ψf (x)

+

+
e2

0

2

∫
xy

Aµ(x)jµ(x)Aν(y)jν(y) + O(α3/2
em ) + O(∆m2

ud )

}

If P is an observable that does not depend on the photon field

〈P〉Q[C+E]D = 〈P〉iso −
∫
x

〈

 c0

4
trG 2(x) +

∑
f =u,d

∆mf
0ψ̄f ψf (x)

P〉0,c+

+
e2

0

2

∫
xy

∆µν(x − y)〈jµ(x)jν(y)P〉0,c + . . .

If P transforms non-trivially under isospin rotations

〈P〉Q[C+E]D = −
∆mud

0

2

∫
x

〈[ψ̄uψu(x)− ψ̄dψd (x)]P〉0,c+

+
e2

0

2

∫
xy

∆µν(x − y)〈jµ(x)jν(y)P〉0,c + . . .



Sketching the BMW method

Simulate the full QCD+QED theory on the lattice. Since isospin-breaking effect are small, one needs
to amplify them by simulating at larger values of αem and ∆mud . An interpolation is needed.
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Two ways for QCD+QED on the lattice

I RM123 method

〈P〉Q[C+E]D = −
∆mud

0

2

∫
x

〈[ψ̄uψu(x)− ψ̄dψd (x)]P〉0,c+

+
e2

0

2

∫
xy

∆µν(x − y)〈jµ(x)jν(y)P〉0,c + . . .

Pros:
Only O(α0

em) observables.
Cons:
Complex observables (e.g. a 4-point functions
for mass correction), typically involving fermionic
disconnected diagrams.

I BMW method
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Pros:
Simpler observables (e.g. 2-point func-
tions for mass correction).

Cons:
Signal is typically O(αem).



Charged states in finite volume

Quick review of methods you’ll hear about here



Charge states in a finite box

In a finite box with periodic boundary conditions, Gauss law forbids states with nonzero charge

Q =

∫
d

3x j0(t, x) =

∫
d

3x ∂kEk (t, x) = 0

QED + Feynman gauge ⇒ electron two-point function 〈ψ(x)ψ̄(y)〉
However in finite volume, large gauge transformations survive a local gauge fixing

Aµ(x)→ Aµ(x) +
2πnµ

L
, ψ(x)→ e

2πinµxµ
L ψ(x)

〈ψ(x)ψ̄(y)〉 → e
2πinµ(x−y)µ

L 〈ψ(x)ψ̄(y)〉 ⇒ 〈ψ(x)ψ̄(y)〉 = 0

Large gauge transformations shift the zero-modes of the photon field.

I Various constraints on some momentum components of the photon field. Hayakawa, Uno,
Prog. Theor. Phys. 120 (2008) 413-441.∫

d3x Aµ(t, x) = 0

Widely used, but the constraint is non-local.

I Add a mass to the photon. Endres et al., Phys. Rev. Lett. 117 (2016) no.7, 072002..

I Make the photon field antiperiodic (the only translational-invariant way to do this is by means
of C? boundary conditions). Wiese, Nucl. Phys. B 375, 45 (1992). Lucini et al., JHEP 1602,
076 (2016).



QEDL: spatial zero-modes
Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008)

Recipe: Remove the spatial zero-mode of the gauge field in each timeslice∫
d

3x Aµ(t, x) = 0

QEDL has a transfer matrix. It is a nonlocal prescription. Locality is a core property of QFT, it is a
fundamental assumption behind

I Renormalizability by power counting
I Volume-independence of renormalization constants
I Operator product expansion → it fails for operators with enough large dimension
I Effective-theory description of long-distance physics → it fails at large enough order
I Symanzik improvement program → it fails at large enough order
I ...

Argument by N. Tantalo. Correction to the mass (Cotthingham formula)

∆m = 〈h|C.T.|h〉c,QCD −
e2

4mL3

∑
k

∫
dk0

2π

1− δk,0

k2

∫
R×L3

d4x e−ikx〈h|T{jµ(x)jµ(0)}|h〉c,QCD

Large k0-behaviour of the subtraction

1

L3

∫
k0<a−1

dk0

2π

δk,0

k2
0

O4

k2
=

O4δk,0

L3

∫
k0<a−1

dk0

2π

1

k4
0

= finite part +
a3

L3

Odd powers of a that are not chirally-suppressed, even in chirality-preserving discretizations.



QEDm: massive photon
Endres et al., arXiv:1507.08916

Recipe: Feynman gauge + mass term for photon.

Local prescription. Gauge invariance is broken in a controlled way (soflty broken). Infinite-volume
limit must be taken before the mγ → 0 limit.

In the mγ → 0 limit

〈ψ(x)ψ̄(0)〉 ∝ e
− e2

2m2
γV

x2
0
〈δQ(T ),0ψ(x)ψ̄(0)〉TL

where 〈·〉0 is the expectation value in QEDTL. In this regime, QEDm is just a complicated way to
calculate QEDTL expectation values.

The e−x2
0 is at odds with a standard transfer-matrix interpretation. The QEDm Hamiltonian is not

Hermitean. Roughly speaking, the e−x2
0 is generated by a continuous Gaussian spectral density and

imaginary eigenvalues of the Hamiltonian∫
dE e−E2

e iEx0 = e−x2
0

The Hamiltonian is Hermitean when restricted to the zero-charge sector (no funny behaviour), e.g.
in the calculation of isospin-breaking corrections to the HVP.



C? boundary conditions
Wiese, Nucl. Phys. B 375, 45 (1992)

Polley, Z. Phys. C 59, 105 (1993)
Kronfeld and Wiese, Nucl. Phys. B 357, 521 (1991)

Lucini, AP, Ramos, Tantalo, JHEP 1602, 076 (2016)

Recipe: Use C? boundary conditions along spatial
directions for all fields

Aµ(x + Lk) = −A∗µ(x)

ψ(x + Lk) = C−1
ψ̄

T (x)

The flux of electric fiels across the boundaries in
not forced to vanish

Q(t) =

∫
d

3x j0(t, x) =

∫
d

3x ∂kEk (t, x) 6= 0

Local prescription. Gauge invariance is preserved. Continuum limit can be consistently take before
infinite-volume limit. Flavour and charge conservation are partially violated.

I This generates unphysical decay of a few hadrons, but most of them are protected. In n-point
functions involving the non-protected hadrons, infinite-volume limit must be taken before the
large-t limit.

I Non-physical decay is exponentially suppressed with the volume.
I Flavour symmetry is broken only by boundary effects. Composite operators renormalize as if

flavour symmetry were intact.



Gauge-invariant charged states

Some exploratory runs



Interpolating operators for electrically-charged states

I In infinite volume it is possible to define gauge-invariant interpolating operators for charged
states. These operators must be non-local, however they can be chosen to be local in time.

I Why do we care? Gauge fixing is perfectly fine in QED.

I In covariant gauge the Hilbert space includes non physical states, that need to be projected out
by hand. In the Euclidean, the Hamiltonian is not hermitean. It is possible to write an effective
Hamiltonian for the physical states. In the sector with non-zero charge, the effective
Hamiltonian is time-dependent: physical states couple to an external, unphysical and
time-dependent current.

I In gauge-invariant quantization, the Hilbert space contains only positive-norm state. Physical
states are selected by requiring gauge invariance, i.e. they are automatically generated by
gauge-invariant operators.

I With minimal effort, we can construct gauge-invariant interpolating operators for charged
states. So why should we bother to fix the gauge?
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Interpolating operators for electrically-charged states

I Dirac interpolating operator in infinite volume:

Ψ(t, x) = e−ı
∫

d3y Φ(y−x)∂kAk (t,y)
ψ(t, x)

where Φ(x) is the electric potential of a unit charge

∂k∂kΦ(x) = δ
3(x)

I Ψ(t, x) is invariant under infinitesimal gauge transformations with a compact support

Ak (t, x)→ Ak (t, x) + ∂kλ(t, x) ψ(t, x)→ eıλ(t,x)
ψ(t, x)

e−ı
∫

d3y Φ(y−x)∂kAk (t,y) → e−ı
∫

d3y Φ(y−x)∂kAk (t,y)e−ı
∫

d3y Φ(y−x)∂k∂kλ(t,y) =

= e−ı
∫

d3y Φ(y−x)∂kAk (t,y)e−ıλ(t,x)

I Ψ(t, x) is charged under global gauge transformations

Ak (t, x)→ Ak (t, x) ψ(t, x)→ e iαψ(t, x)



Interpolating operators for electrically-charged states

The Dirac interpolating operator can be constructed also in finite volume

Ψ(t, x) = e−ı
∫

d3y Φ(y−x)∂kAk (t,y)
ψ(t, x)

provided that the Poisson equation has solutions

∂k∂kΦ(x) = δ
3(x)

The Poisson equation has no solutions on a torus with peridic boundary conditions, while it admits a
unique solution with C-parity boundary conditions

Φ(x + Lk) = −Φ(x)

This construction is not unique!



Interpolating operators in the compact formulation
Lucini, AP, Ramos, Tantalo, JHEP 1602, 076 (2016)

Hansen, Lucini, AP, Tantalo, JHEP xywz (2018)

I In the compact formulation the path-integral is well defined without gauge fixing

I Choose an unconventional normalization for the U(1) gauge field (action)

S =
1

g2
0

∑
x,µν

{1− Vµν(x)} +
62

2e2
0

∑
x,µν

{1− Uµν(x)} + (ψ̄f ,Df [U6qf V ]ψf )

Uµ(x) = 1 +
i

6
Aµ(x) + O(A2)

I Diracs interpolating operators can then be implemented as analytical functions of the link
variables, e.g.

Ψf (x) =
1

3

3∑
k=1

ψf (x)

L−1∏
s=0

Uk (x + sak̂)−3qf

I The mass of, say, the charged kaon can be extracted from the fully gauge invariant correlator∑
x

〈S̄γ5U(t, x) Ūγ5S(0)〉 ' A(L)e−M
K+ (L)t



Some explorations
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Full QCD+QED simulations (QCD parameters from CLS, Bruno, Korzec, Schaefer Phys. Rev. D 95 (2017))

243 × 48 β = 3.55 κf = {0.137, 0.137, 0.137}

a(αem = 0) = 0.0643(7)fm L(αem = 0) = 1.54fm Mπ,K (αem = 0) = 420MeV

αem = {0.05, 1/137} qf = {+2/3, 1/3, 1/3}



Some explorations
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Real photons
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Vk (t) =
1

2L3

∑
x

{S̄γkU(t, x)− ŪγkS(t, x)} W I
k (t) =

∑
p∈Oh p̄

P̃(t,−p)εk`jp`Ã
c
j (t, p)

P̃(t, p) =
1

2L3

∑
x

e ipx{S̄γ5U(t, x)− Ūγ5S(t, x)} p̄ =
π

L
(1, 1, 1)

Ãc
k (t, p) =

1

L3

∑
x

e ipx4−1∇̄jFjk (t, x)



Crash intro to decay rates

Mostly nice pictures



Bloch-Nordsieck prescription

From the experimental point of view it is impossible to differentiate between

h → ` + ν̄ ,

h → ` + ν̄ + Nγ ,

• if each photon is emitted with a lower energy than the detector resolution ∆E ;

• and the total energy carryed away by the undetected photons is (roughly) less than the resolution
∆E with which we can reconstruct the lepton energy.

The physical quantity is the decay rate integrated over soft photons, which is finite.1

Γ(∆E) = lim
mγ→0

1

2mπ

∞∑
N=0

1

N!

∫
kα<∆E∑
α kα<∆E

dΦNγ |〈π|HW|`, ν̄,Nγ〉|2 =

=
1

2mπ

∣∣∣∣∣∣ π `
ν̄

+ π `

ν̄

∣∣∣∣∣∣
2

+
1

2mπ

∫
1γ

∣∣∣∣∣∣ π `

ν̄

+ π `

ν̄

∣∣∣∣∣∣
2

1The diagrammatic expansion is wrong. I am deliberately neglecting the wave-function renormalization for sake of presentation.



Bloch-Nordsieck prescription

From the experimental point of view it is impossible to differentiate between

h → ` + ν̄ ,

h → ` + ν̄ + Nγ ,

Some kinematics:

Ph = P` + Pν +
N∑

a=1

Ka Ph = (mh, 0) Pν =

[
m2

h − m2
`

2mh

− ε
]

(1, nν)

Ka =
camhε

E` − p`na
(1, na)

∑
a

ca = 1 + O(ε)

Effective Hamiltonian

HI (0) = Ψ†ν(0)

Full system: QCD + photons + charged lepton + neutrinos

H = H̃ + Hν P = P̃ + Pν

Decay rate

Γ

(
m2
h−m2

`
2mh

− ε < pν <
m2
h−m2

`
2mh

)
=

=
π

2mh

〈h|Ψ†(0)
δ(H̃ + P̃ − mH )

P̃
χ[−ε,0]

(
P̃ − m2

h−m2
`

2mh

)
Ψ(0)|h〉


