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* General framework for computation of leading
order isospin breaking corrections:

Need for definition of a “scheme”
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Motivations to study a, on the lattice

x 3 sigmas discrepancy between exp and theo [egerienner and Nyfreler, 2009]

ex —3
a, P — 1.16592080(63) x 10
the _ 1.16591790(65 103
a, =1 X
f‘lr‘
Contribution Value Error
QED incl. 4-loops+LO 5-loops 116 584 T18.1 0.2
Leading hadronic vacuum polarization 6903.0 52.6 @
Subleading hadronic vacuum polarization -100.3 1.1
1 4
Hadronic light—by—light 116.0  39.0 ; f
Weak incl. 2-loops 153.2 1.8
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Future experiments will shrink the error!

o (eT e~ — Had)-method still the most accurate

(includes all SM contributions)

Exp. data with space-like kin. allow for direct comparison with Lattice
[Carloni Calame at al. Phys. Latt. B746:325—-3290, 2015]

30 ~ 4% on aELO QED corrections ~ 1%
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In this talk we explore EM corrections to the HVP

Can we pin them down? (lattice error HELO ~ 5%)
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IR regularizations of choice
We do not discuss all the (many) issues with QED here

[Portelli PoS KAON 13 (2013) 023] [Patella PoS LATTICE 2016 (2017)]

QEDy, QEDwM

[Borsanyi et al. Science 347 (2015) 1452] [Endres et al. Phys. Rev. Lett. 117 (2016) no.7, 072002]
Easy implementation Easy implementation
Non-local constraint Local formulation
Power-like finite vol. corr. Exp. suppressed finite vol. corr.
Renorm. issues for op. d > 4 m., “too small”
Convincing spectrum results — t-dep. in eff. masses
Non-comm. L — 00 <+ a — 0 — p stiffness in eff. en.

Non-comm. m, — 0 < [ — oo

Non-comm. of limits in QEDy; resembles p and ¢ regimes in v-PT

In v-PT: mZV vs 1 In QEDpg: 7 vs 1

Remark: Massive photons form Bose-Einstein condensate
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Wilson loops in pure QED: V = 324 1

wWyw (1, 1) = exp (2e2Q* [Cu(1,0) — G (1. 1D)]) . Cu(l,x) = ID(x) + » (I — 7)D(x + /)

T=1
D(x) is the infinite lattice massless/massive scalar propagator in
coordinate space
Liischer-Weisz method

[Luscher and Weisz, Nucl. Phys. B 445 (1995) 429]

Borasoy-Krebs method

[Borasoy and Krebs Phys. Rev. D 72 (2005) 056003]
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QCD ensembles

Goal: QED corrections to aELO in QCD4+qQED framework

Dynamical QCD cnfs generated by CLS with Nf = 2 degenerate flavors
of non-perturbatively O(a) improved Wilson fermions

[Capitani et al. Phys. Rev. D 92 (2015) no.5, 0564511]

B =52, cy = 2.01715, k. = 0.1360546, a[fm] = 0.079(3)(2), L/a = 32

Run K am.,. myL | m.[MeV]

A3 | 0.13580 | .1893(6) | 6.0 473
A4 | 0.13590 | .1459(6) | 4.7 364
A5 | 0.13594 | .1265(8) | 4.0 316

QED inclusion shifts the critical mass!
Remark: 1% Net effect on m. translates in O(100%) change in mq (for mg ~ mgcn)

Important for m; and therefore HVP!
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QCD+qgQED ensembles

Inclusion of gQED with o« = 1/137 and physical charges Q =2/3,-1/3

g =52 e) =02

—0.315 — 5
—0.32 fir

—0.325 |

—0.33 [

m,.

—0.335 | .
QCD

tadpole resummation

—0.34

one loop

—0.345

#*

simulations ——s—— |
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4 5 6 T B
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0o 1 2 3

Notice: m. EM shift in A5 gives m

Notice: Matching between ensembles m

within errors
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Run am- am_o_ am_o_ 3 am_4
0 .2549(9) 2071(9) .2330(9)
A3 0.1 .2556(7) .2074(8) .2337(8)
0.25 .2553(7) .2072(8) .2331(8)
0 .2240(8) .1691(9) .1994(9)
A4 0.1 .2252(9) .1699(9) .2005(9)
0.25 .2246(8) .1700(10) .1998(9)
0 .2105(7) .1526(9) .1849(8)
Ab 0.1 2114(7) .1528(9) .1856(8)
0.25 2111(7) .1531(9) .1852(8)
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Pion masses going from 380 MeV to 640 MeV

Q(C+E)D
mo=unu
Q(C+E)D
T

~ QCD
~ 2m>

(A5) ~ mYP(A3)

Finite volume and photon mass effects have been checked with PT formulae and negligible




Dependence on m,

For m

~ = 0.1 the coeff. of linear t-term in eff. energies is suppressed

(m V)1 ~5x107°
not visible in the effective masses for m, € [0.05,0.1,0.15,0.2,0.25, 2, 5]
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QEDy, is consistent with QEDyy
for m, — 0

Expectation:
photons decouple for m, — oo

[Appelquist and Carazzone Phys. Rev. D 11 (1975) 2856]

Our choices are m,, = 0.1,0.25



Dispersion relation m, = 0.1

A3, Feynman

0.45 045 7 Dispersion relation
[ Q(C+E\)D Ab: 77—
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All the effective energies agree with the continuum curve (solid lines)
Charged pion mass in A3 QCD matches the one in A5 Q(C+En)D
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So far...

~ =~ 0.1 seems to be a safe choice

— Negligible finite volume effects
— Negligible finite photon mass effects
— No subtle reduction to QEDr,

— QEDy, is consistent (for the spectrum and these parameters)

Pion masses in A5 Q(C+E)D "match” A3 QCD ones
— HVP depends strongly on pion masses

— Can give direct access to EM effects in the HVP

Michele Della Morte, IFT, 23/5/2018
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HVP
HVP tensor: M, (q) = [d*xe®*(V,(x)V,(0))

Is the current still conserved
in Q(C+E)D formal theory?

Combination of 1 and 73 in flavor is

conserved
SU(2)r, ® SU(2)r @ U(1)y .
i explicit and spontaneous o O [Qu 3
QCD : SU(2)y ® U(1)vy V:H(X) — W{X) l,u[ 5 (l—l—T )
J, explicit & B
Q(C+E)D: U (1)y ® U(1)y + 5 (-7 )}W(X)

On the Lattice: 1-point-split current conservation implies /7, = 1
no QED effects to take into account

For completeness:
Neglecting quark-disconnected diagrams

Electroquenched approximation

Michele Della Morte, IFT, 23/5/2018 12



Scalar HVP

Agreement between QEDy, and QEDy Matching gives direct access to EM eff.
QECHED-AS
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ro/a as any other gluonic scale does not receive QED contributions in the
quenched approximation

For completeness:
ZMS modification [Bernecker and Meyer Eur. Phys. J. A 47 (2011) 148]
Padé fit Rip to extract [1(0) [Blum et al. JHEP 1604 (2016) 063]
Point sources are used
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Strategy to extract EM effects for a,

First strategy
— Fit scalar HVP in Q(C+E)D and compute a,

— Fit scalar HVP in QCD and compute a,

— After extrapolation to infinite volume, physical point and
continumm take the difference between QCD and Q(C+E)D

results

The effect can be washed out by the various systematics...

Second strategy
— Take MQC+E)D _ [QCD = 577 at fixed pion masses

— Fit 01 and plug it in a), = [ f(q)oM
— Extrapolate to infinite volume, physical point and continuum

Only one fit has to be performed to a slowly varying function

Michele Della Morte, IFT, 23/5/2018
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Matching gives direct access to EM eff.
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There is a clear signal, integrating up to rpg? =~ 20

ai x 101° = 21 4 9.

[A. Bussone, MDM, T. Janowski, arXiv:1710.06024]

Still effects to quantify, e.g. in a and m, (this could be large), so far m, ~ 460
MeV, a~ 08 fm ... Strong isospin breaking
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Renormalization of the photon mass

@ We are interested to O(«).

@ [he renormalization is multiplicative because in the massless limit one
recovers gauge invariance and the mass term is not generated.

@ [o leading order the only continuum diagram contributing is

K

K-P

that is absent in the electroquenched theory (no quark loops), and so
are all the tadpoles. In general they should be proportional to m:‘?.

@ In the electroquenched theory one only needs to scale am., with the
lattice spacing to keep m., fixed.

Michele Della Morte, IFT, 23/5/2018 16



We think of an observable as a function of renormalized parameters.
Neglecting the dependece of as on «, i.e., the dependence of a on «

O = O ((mg — my)r(a), (mg + my)r(e), a) .

Those are clearly not independent, so not suited for an expansion

We can start by fixing
(md + mu)R(a) = (md + mu)RJ,hys = (md + mu)pDG ~ 6.7 MeV for all
values of . That makes it a-independent by construction.

Michele Della Morte, IFT, 2!



In xPT EM corrections to m?, start at O(a?) (e.g., (siinens and Praces,
hep-ph/9610360]) and so do the strong IB corrections in SU(3) xPT. They are
due to 70 — 7 mixing (e.g., [Scherer, hepfph/0210398])

So to leading order in IB corrections fixing (mg + my)r(«) is equivalent to
fixing m2, to its physical value.

@ One could have fixed directly the PCAC quark masses, although that
requires computing O(«) corrections to Z4 and Zp.

@ outside the isospin limit the 70 correlator receives quark-disconnected
contributions. In additin, with Nf = 3 one needs to solve the 7% — 7
mixing (e.g. by using at least two interpolating fields and GEVP).

Michele Della Morte, IFT, 23/5/2018



Now we have
O =0 ((mg — my)r(a),6.7 MeV, ) .

since in the end we are interested in an expansion around o = 0 and
om = 0 it is convenient to rewrite O as function of (mg — my)|a=0. Here
the scheme dependence enters.

We need the splitting as a function of «, but in studying that we must
have two prescriptions to fix the quark masses. One is keep m_o fixed,
there's then a scheme dependence of (my — my)|a=0 on the second
condition.

Let's look at two examples:
1) keep the neutron proton splitting to its physical value
2) keep the splitting between © and ¥~ to its physical value

Michele Della Morte, IFT, 23/5/2018



Looking at Fig. 3 in [1406.408s]

2
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say a 30% decrease in the splitting at a = 0 compared to the physical
value.
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YT is uus and L~ is dds, both have |charge| = 1 so at leading order EM
corrections cancel in the splitting, which is entirely due to dm. By tuning
quark masses vs o keeping that fixed one gets something like

FI e e L e L PP L PR PP P B

15 —

(mem),  [Mev]

05+ —

n | n | n | 1
% 0.002 0.004 0.006 1/137 0008

Both choices are equally good, but this one seems better. The question is
what is the difference in (my — my)|a=0 for the two prescriprions. If that
were O(appys), the result of the expansion would be ambiguous by
O(aphys), which would make all the computation meaningless.

Michele Della Morte, IFT, 23/5/2018



The condition:
dim(a = 1/137) = dom(a = 1/137) = dmppys ,

after linearizing the dependence around o = 1/137

§im(c) = 6mphys + (o — 13=) * ¢ -

would only give d;m(0) — dom(0) = O(aphys).

In order to obtain a stronger bound we use that in continuum and
renormalized perturbation theory the EM corrections to the quark masses
are multiplicative as a consequence of chiral symmetry (and the two
schemes preserve WI).

Michele Della Morte, IFT, 23/5/2018



We write
mj(a) = m,(0)Z(e), and mg(a) = my(0)Zy(a),

with Z{(a) =1+ Cia+---. The mass on the rhs for example is the
renormalized QCD mass in the i scheme.
The splitting now reads

sim(a) = 5im(0) Z(0) + (Zi(e) ~ Zi(a))m(0)
= 0;m(0) (1 + C ) + Crg—yaamy(0) .

Using the fact that, numerically, m ~ my, one obtains

sim(a) = 8;:m(0)(1 + Cia) + O(adm) .

Michele Della Morte, IFT, 23/5/2018



By requiring the two splittings to be the same for o = 1/137 = appys
51m(0)(1 + Cpaphys) = dam(0)(1 + C2aphys) + O(adm) ,
which implies

51m(0) — 62m(0) = aphys (C30om(0) — Cio1m(0)) + O(adm)
= aphys(C2 — C1)o1m(0) + O(a?) + O(adm) .

So, finally
d1m(0) — dom(0) = O(a2) + O(adm) .

Michele Della Morte, IFT, 23/5/2018



Back to the expansion of O, in conclusion one can either use §1m or dom,
for leading corrections in « and dm. Now we think of

O = 0(6;m(0),6.7 MeV (or m?, fixed to its physical value), o) ,
which can be expanded as
0 = 0(0,6.7MeV,0) 4 appys 2000 MNVa)|

a=0

+—awmﬂ@%%%ﬁmﬂ+om%+mmm.

@ first term should be computed in pure QCD with degenerate up and
down quarks.

o for the second one needs to simulate QCD+QED using the same bare
masses for the up and down quarks, such that for & = 0 the two
would be degenerate.

@ the third term must be computed in QCD with non-degenerate up
and down quarks.

Assuming derivatives of O(1), using dom(0) instead of §;m(0) is an
O(a?), O(adm) effect.

Michele Della Morte, IFT, 23/5/2018



Being pragmatic:

Typical differences between definitions of dm;(0) are around 30%, so in the
end one could perhaps use the physical splitting multiplying the derivative
above, if interested in IB corrections with that accuracy (30% of 1% is still

3 permil on O)

Michele Della Morte, IFT, 23/5/2018



o Feasibility study for the computation of EM corrections to g-2 using
massive QED.

@ Already there (and in general in any approach) the definition of a
scheme for macthing computations between QCD+QED and QCD
seems to be an advantage.

@ Setup for the computation of IB corrections. One needs to define a
scheme, but at leading order results are 'scheme independent’.

@ The setup discussed may be ideal (it involves baryons, disconnected
diagrams, and mixing problems). One may have to accept some
pragmatic compromises in actual implementations.

Michele Della Morte, IFT, 2!
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