Evidence for non perturbative fermion mass generation

Petros Dimopoulos

University of Rome "Tor Vergata"

Frontiers in Lattice Quantum Field Theory, UAM-IFT, Madrid, May 21 - June 1, 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a list of publications on this topic

- R. Frezzotti and G.C. Rossi

Nonperturbative mechanism for elementary particle mass generation PRD 92 (2015) 054505

- R. Frezzotti and G.C. Rossi Dynamical mass generation PoS LATTICE2013 (2014) 354

- R. Frezzotti. M. Garofalo and G.C. Rossi
 Nonsupersymmetric model with unification of electroweak and strong interactions
 PRD 93 (2016) 105030

- S. Capitani et al. Check of a new non-perturbative mechanism for elementary fermion mass generation PoS LATTICE2016 (2016) 212

- S. Capitani et al. Testing a non-perturbative mechanism for elementary fermion mass generation: lattice setup EPJ Web Conf. 175 (2018) 08008

- **S. Capitani** et al. Testing a non-perturbative mechanism for elementary fermion mass generation: Numerical results EPJ Web Conf. 175 (2018) 08009

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- F. Pittler Spectral statistics of the Dirac operator near a chiral symmetry restoration in a toy model EPJ Web Conf. 175 (2018)

• results presented here in collaboration with

R. Frezzotti, M. Garofalo and G.C. Rossi

B. Kostrzewa, F. Pittler and C. Urbach

Università di Roma "Tor Vergata"

HISKP (Theory), Universität Bonn

Overview

- Widely accepted the *incompletness* of the SM: a number of fundamental phenomena are not satisfactorily or not at all described by/within it.
- This has motivated a vast variety of ingenious and original New Physics proposals BSM.
- However, this task is proved to be non-trivial perhaps due to the fact that **SM** is a renormalisable theory.
- SM describes elemenentary particle masses employing the symmetry breaking $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$. The *hierarchy* pattern of fermion masses (but also Higgs mass un-natural feature) lack deep understanding.

Masses are rather accomodated by fitting to experimental data.

Overview

Dynamical generation of elementary fermion mass

- Similar physics effect which generates $\langle \bar{q}q \rangle \neq 0$
- where dynamical χSB triggered by an explicit χSB term i.e. fermion mass or Wilson term.
- In (massless) LQCD with Wilson term Non-Perturbative contribution $(\propto \Lambda_{QCD})$ is accompanied by an 1/a divergent term.
 - Axial WTI: $\partial_{\mu}\langle \hat{J}_{5\mu}(x)\hat{O}(0)
 angle=2(m_0-ar{M}(m_0))\langle \hat{P}(x)\hat{O}(0)
 angle+O(a)$
 - where: $\bar{M}(m_0) = \frac{c_0(1-d_1)}{a} + c_1(1-d_1)\Lambda_{\rm QCD} + d_1m_0 + O(a)$
 - If we could set

$$m_0 = c_0/a \quad
ightarrow \quad \partial_\mu \langle \hat{J}_{5\mu}(x) \hat{O}(0)
angle = c_1(1-d_1) \Lambda_{\rm QCD} \langle \hat{P}(x) \hat{O}(0)
angle + O(a)$$

 Separation of the two effects requires an infinite fine tuning (→ naturalness problem).

Overview

• Dynamical generation of elementary fermion mass

- Proposal: QCD extended to a theory with enriched symmetry for tackling naturalness problem.
- elementary fermion mass generation owing to NP mechanism triggered by a Wilson-like (naively irrelevant) chiral breaking term.
- Simplest toy-model where the mechanism can be realised:
 - SU(N_f = 2) doublet of strongly (SU(3)_c) interacting fermions coupled to scalars via Yukawa and Wilson-like terms
 - physics depends crucially on the phase (Wigner or NG)
 - enhanced symmetry leads to $\langle \Phi \rangle \text{-independence of fermion masses}$
 - elementary fermion mass: $m_q = O(\alpha_s)\Lambda_s$
- The intrinsic NP character of the mechanism requires lattice numerical investigation of the toy model thanks to which we can falsify/support it.

Theoretical setup

• Toy-model: $QCD_{N_f=2}$ + Scalar field + Yukawa + Wilson

$$L_{toy} = L_{kin}(Q, A, \Phi) + V(\Phi) + L_Y(Q, \Phi) + L_W(Q, A, \Phi)$$
, with:

$$\begin{split} L_{kin}(Q, A, \Phi) &= \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \bar{Q}_{L} \gamma_{\mu} D_{\mu} Q_{R} + \bar{Q}_{R} \gamma_{\mu} D_{\mu} Q_{L} + \frac{1}{2} \mathrm{Tr} \left[\partial \Phi^{\dagger} \partial \Phi \right] \\ V(\Phi) &= \frac{1}{2} \mu^{2} \mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] + \frac{1}{4} \lambda \left(\mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^{2} \\ L_{Y}(Q, \Phi) &= \eta \left(\bar{Q}_{L} \Phi Q_{R} + \bar{Q}_{R} \Phi Q_{L} \right) \\ L_{W}(Q, A, \Phi) &= \rho \frac{b^{2}}{2} \left(\bar{Q}_{L} \overleftarrow{D}_{\mu} \Phi D_{\mu} Q_{R} + \bar{Q}_{R} \overleftarrow{D}_{\mu} \Phi^{\dagger} D_{\mu} Q_{L} \right) \\ (\text{where } \overleftarrow{D}_{\mu} &= \overleftarrow{\partial}_{\mu} + i g_{s} \lambda^{a} A^{a}_{\mu}, D_{\mu} = \partial_{\mu} - i g_{s} \lambda^{a} A^{a}_{\mu}) \end{split}$$

• Q: fermion SU(2) doublet coupled to SU(3) gauge field and to scalar field through Yukawa and Wilson terms.

- $\Phi = (\phi, -i\tau_2\phi^*)$ and ϕ isodoublet of complex scalar fields.
- b^{-1} : UV cutoff.

Theoretical setup (contd.)

• $\chi_L \times \chi_R$ transformations are symmetry of L_{toy} :

$$egin{aligned} &\chi_L: \tilde{\chi}_L \otimes (\Phi o \Omega_L \Phi) & \chi_R: \tilde{\chi}_R \otimes (\Phi o \Omega_R \Phi) \ & ilde{\chi}_L: Q_L o \Omega_L Q_L, & ilde{\chi}_R: Q_R o \Omega_R Q_R, \ & ilde{Q}_L o ar{Q}_L \Omega_L^\dagger & ilde{Q}_R o ar{Q}_R \Omega_R^\dagger \ &\Omega_L \in SU(2)_L & \Omega_R \in SU(2)_R \end{aligned}$$

- Exact symmetry χ ≡ χ_L × χ_R acting on fermions and scalars ⇒ NO power divergent mass terms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• *P*, *C*, *T*, gauge invariance are symmetries & power counting renormalisation.

Theoretical setup (contd.)

• The shape of $V(\Phi)$ determines crucially the physical implications of the model

• When the scalar potential $V(\Phi)$ has one minimum

 $\blacktriangleright \chi_L \times \chi_R \text{ is realized à la Wigner.}$

- They get renormalised after considering the operator mixing procedure.
- PT operator mixings $\rightarrow NO \ \tilde{\chi}-SSB$ phenomenon occurs $\rightarrow NO$ NP fermion mass generation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theoretical setup (contd.)

- Critical Model: χ̃-symmetry restoration occurs when the Yukawa term is compensated by the Wilson term. This takes place (in the Wigner phase) at a certain value of the Yukawa coupling.
- In fact, for $\tilde{J}_{\mu}^{L,i}$ (or $\tilde{J}_{\mu}^{R,i}$) get $\partial_{\mu} \langle \tilde{Z}_{j} J_{\mu}^{L,i}(x) O(0) \rangle = (\eta - \overline{\eta}(\eta; g_{s}^{2}, \rho, \lambda)) \langle [\bar{Q}_{L} \tau^{i} \Phi Q_{R} - h.c.](x) O(0) \rangle + O(b^{2})$ (SDE renrm/tion here analogous to chiral SDE renrm/tion in Bochicchio *et al. NPB 1985*)
- ► enforce the current $\tilde{J}_{\mu}^{L,i}$ (or $\tilde{J}_{\mu}^{R,i}$) conservation \implies $\eta - \overline{\eta}(\eta; g_s^2, \rho, \lambda) = 0 \qquad \rightarrow \qquad \eta_{cr}(g_s^2, \rho, \lambda).$
- The Low-Energy effective action (in the Wigner phase) reads $\Gamma_{\mu_{\Phi}^2 > 0}^{Wig} = \frac{1}{4} (F \cdot F) + \bar{Q} \mathcal{P}Q + (\eta - \eta_{cr}) (\bar{Q}_L \Phi Q_R + \text{h.c.}) + \frac{1}{2} \text{Tr} \left[\partial_\mu \Phi^{\dagger} \partial_\mu \Phi \right] + V_{\mu_{\Phi}^2 > 0} (\Phi)$
- in the critical theory ($\tilde{\chi}$ is a symmetry, up to $O(b^2)$)
 - Scalars decoupled (up to cutoff effects) from quarks and gluons.
 - ▶ no fermionic mass $(m_Q = 0 \text{ up to } O(b^2))$.

Numerical investigation

Lattice simulation details

- Lattice discretization, *L_{latt.}* with naive fermions and *d* = 6 Wilson term: exact χ-symmetry respected.
- We limit our first study to the quenched approximation
- Quenching: independent generation of gauge (U) and scalar (Φ) configurations.

 \Rightarrow it is quite certain that the mechanism under investigation, if confirmed, survives quenching.

Numerical investigation

Lattice simulation details

• To avoid "exceptional configurations" (\rightarrow due to fermions zero modes) introduce twisted mass IR regulator $L_{latt.} + i\mu \bar{Q}\gamma_5 \tau^3 Q$.

(Frezzotti, Grassi, Sint and Weisz, JHEP 2001)

 \Rightarrow at a cost of soft breaking of $\chi_L \times \chi_R$, symmetry recovered after an extrapolation to $\mu \to 0.$

• Locally smeared Φ in $\overline{Q}D_{lat}[U, \Phi]Q$ for noise reduction.

Numerical investigation

- * simulations at three values of the lattice spacing
- * $\beta = 5.75$ (b = 0.15 fm), $\beta = 5.85$ (b = 0.12 fm) & $\beta = 5.95$ (b = 0.10 fm)
- * (L/b, T/b) = (16, 32), (16, 40), (20, 48) (Wigner phase) (L/b, T/b) = (16, 40), (20, 40), (24, 48) (NG phase) L = 2.0 - 2.4 fm, T = 4.8 fm.
- use lattice scale r₀ = 0.5 fm (motivated from QCD, for illustration)
 Guagnelli, Sommer and Wittig NPB 535 (1998) & Necco and Sommer NPB 622 (2002)
- * statistics: #configs (gauge × scalar) 480 (Wigner), 60-80 (NG)

@ several values of the Yukawa coupling η (and μ).

* set same λ_0 in Wigner and NG phases (keep fixed scalar field parameters by imposing conditions on $(r_0 M_\sigma)^2$, λ_R and $(r_0 v_R)^2$ (NG phase)).

• Renormalised Schwinger-Dyson eqs of \tilde{V}^3 and \tilde{A}^1 -type (in the form of a would be $\tilde{\chi}$ -WTI):

$$\partial_{\mu} \tilde{J}^{V3}_{\mu} = (\eta - \eta_{cr}) \tilde{D}^{V3} + O(b^2)$$

$$\partial_{\mu} \tilde{J}^{A1}_{\mu} = (\eta - \eta_{cr}) \tilde{D}^{A1} + O(b^2)$$

where

$$\begin{split} \tilde{J}_{\mu}^{V3}(x) &= \tilde{J}_{\mu}^{R3}(x) + \tilde{J}_{\mu}^{L3}(x) \\ \tilde{J}_{\mu}^{A1}(x) &= \tilde{J}_{\mu}^{R1}(x) - \tilde{J}_{\mu}^{L1}(x) \\ \tilde{J}_{\mu}^{L/R3}(x) &= \frac{1}{2} \left[\bar{Q}_{L/R}(x-\hat{\mu})\gamma_{\mu}\frac{\tau_{3}}{2}U_{\mu}(x-\hat{\mu})Q_{L/R}(x) + \bar{Q}_{L/R}(x)\gamma_{0}\frac{\tau_{3}}{2}U_{\mu}^{\dagger}(x-\hat{\mu})Q_{L/R}(x-\hat{\mu}) \right] \\ \tilde{D}^{V3}(y) &= \bar{Q}_{L}(y) \left[\Phi, \frac{\tau^{3}}{2} \right] Q_{R}(y) - \bar{Q}_{R}(y) \left[\frac{\tau^{3}}{2}, \Phi^{\dagger} \right] Q_{L}(y) \\ \tilde{D}^{A1}(y) &= \bar{Q}_{L}(y) \{\Phi, \frac{\tau^{1}}{2}\} Q_{R}(y) - \bar{Q}_{R}(y) \{\frac{\tau^{1}}{2}, \Phi^{\dagger}\} Q_{L}(y) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• A determination of η_{cr} could be obtained employing the "WI" ratio i.e. compute:

$$r_{VWI}(\eta; \mathbf{g}_{s}^{2}, \lambda_{0}, \rho, \mu) \equiv \frac{\partial_{0} \sum_{\mathbf{x}} \langle \tilde{J}_{0}^{V3}(\mathbf{x}, x_{0}) \tilde{D}^{V3}(\mathbf{0}) \rangle}{\sum_{\mathbf{x}} \langle \tilde{D}^{V3}(\mathbf{x}, x_{0}) \tilde{D}^{V3}(\mathbf{0}) \rangle}$$

at several values of η (and $\mu_{\rm Q})$ and extrapolate to

 $r_{VWI}(\eta_{cr}; g_s^2, \lambda_0,
ho, \mu = 0)
ightarrow 0$.

But signal is not sufficiently good due to noise of scalar correlation for euclidian time separation at around 1 fm.

• Alternative determination of η_{cr} :

$$r_{AWI}^{alt}(\eta; g_s^2, \lambda_0, \rho, \mu) = \frac{\sum_{\mathbf{x}} \sum_{\mathbf{y}} \langle P^1(0) [\partial_0 \tilde{J}_0^{A1}](x) \phi^0(y) \rangle}{\sum_{\mathbf{x}} \sum_{\mathbf{y}} \langle P^1(0) D^{A1}(x) \phi^0(y) \rangle}$$

with: $\tilde{D}^{A1}(x) = \bar{Q}_L(x) \{\Phi, \frac{\tau^1}{2}\} Q_R(x) - \bar{Q}_R(x) \{\frac{\tau^1}{2}, \Phi^{\dagger}\} Q_L(x), P^1 = \bar{Q}\gamma_5 \tau^1/2Q,$ $\phi^0 = \frac{1}{4} \operatorname{Tr}[\Phi + \Phi^{\dagger}] = \frac{1}{2} \operatorname{Tr}[\Phi], y_0 = x_0 + \tau \ (\tau = \text{fixed (in practice } \sim 0.6 \text{ fm})).$

 $[\beta = 5.75]$

 $[\beta = 5.85]$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

• r_{AWI}^{alt} inter/extrapolation to zero after taking the limit $\mu \rightarrow 0$ \Rightarrow A few per mille *statistical* error for η_{cr} determination (Preliminary results!).

Further investigation in the Wigner phase

• tm μ -term breaks softly χ -symmetry \rightarrow at all η Goldstone bosons have mass vanishing linearly in μ .

200

э

- V(Φ) of mexican hat shape → χ_L × χ_R realised à la NG.
- $\chi_L \times \chi_R$ spontaneously broken: $\Phi = v + \sigma + i\vec{\tau}\vec{\pi}$, $\langle \Phi \rangle = v \neq 0$.
- $L_W(Q, A, \Phi) = \frac{\rho b^2}{2} \left(\bar{Q}_L \overleftarrow{D}_\mu \Phi D_\mu Q_R + \text{h.c.} \right) \xrightarrow[a \leftrightarrow b]{r \leftrightarrow b \nu \rho}_{a \leftrightarrow b} L_W^{QCD}(Q, A) = -\frac{a r}{2} \left(\bar{Q}_L D^2 Q_R + \text{h.c.} \right).$
- In the *critical* theory $\eta = \eta_{cr}$:
 - the (Yukawa) mass term, $v\bar{Q}Q$, gets cancelled.
 - $\tilde{\chi}$ breaking due to residual $O(b^2)$ effects is expected to trigger dynamical χ SB.

 \Rightarrow Look for dynamically generated fermion mass:

• NP mass term has to be $\chi_L \times \chi_R$ invariant (and under chiral variation can be accomodated in the $\tilde{\chi}$ WTI's).

Note that a term like $m[\bar{Q}_L Q_R + \bar{Q}_R Q_L]$ is not $\chi_L \times \chi_R$ invariant.

• At generic η , two $\tilde{\chi}$ breaking operators are expected to arise:

Yukawa induced + dynamically generated (\leftarrow conjecture)

•
$$\Gamma^{NG} = \ldots + (\eta - \eta_{cr})(\bar{Q}_L \langle \Phi \rangle Q_R + \text{h.c.}) + c_1 \Lambda_s (\bar{Q}_L \mathcal{U} Q_R + \text{h.c.})$$
 where
 $\mathcal{U} = \frac{\Phi}{\sqrt{\Phi^{\dagger}\Phi}} = \frac{(v+\sigma)\mathbb{1} + i\vec{\tau}\vec{\varphi}}{\sqrt{v^2 + 2v\sigma + \sigma^2 + \vec{\varphi}\vec{\varphi}}} \simeq \mathbb{1} + i\frac{\vec{\tau}\vec{\varphi}}{v} + \ldots$
and $\Lambda_s \equiv \text{RGI NP mass scale.}$

 $-\mathcal{U}$ is a non-analytic function of Φ , but transforms like Φ under $\chi_L \times \chi_R$; obviously \mathcal{U} can not be defined in the Wigner phase ($\langle \Phi \rangle = 0$) \rightarrow no NP mass or mixings in the Wigner phase.

- Note that (χ -inv. term): $c_1 \Lambda_s (\bar{Q}_L \mathcal{U} Q_R + h.c.) \simeq c_1 \Lambda_s \bar{Q} Q + \dots$

- Work at the same lattice parameters (β , λ , ρ) as in the Wigner phase
- Compute WTI quark mass: $m_{AWI} = \frac{\partial_0 \langle \tilde{J}_0^{A\pm}(x) P^{\pm}(y) \rangle}{\langle P^{\pm}(x) P^{\pm}(y) \rangle}$ in the NG-phase (where

 $P^{\pm} = \bar{Q}\gamma_5 \tau^{\pm} Q$ - pseudoscalar density) & M_{ps} from $\langle P^{\pm}(x)P^{\pm}(y) \rangle$.

- Work at the same lattice parameters (β , λ , ρ) as in the Wigner phase
- Compute WTI quark mass: $m_{AWI} = \frac{\partial_0 \langle \widetilde{J}_0^{A\pm}(x) P^{\pm}(y) \rangle}{\langle P^{\pm}(x) P^{\pm}(y) \rangle}$ in the NG-phase (where $P^{\pm} = \bar{Q}\gamma_5 \tau^{\pm}Q$ pseudoscalar density) & $M_{\rho s}$ from $\langle P^{\pm}(x) P^{\pm}(y) \rangle$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - の久(で)

• simultaneous polynomial fits for M_{PS}^2 and m_{AWI} in η and in μ (example: $\beta = 5.85$).

• extra/interpolation to η_{cr} (at $\mu \rightarrow 0$).

similar for M_{PS}.

• scaling behaviour of $M_{\rm PS}^2$ and m_{AWI} at η_{cr}

• $m_{AWI} = (\eta - \eta_{cr})v + c_1\Lambda_s \xrightarrow{\eta = \eta_{cr}} m_{AWI} = c_1\Lambda_s$

• m_{AWI} vanishes at $\eta^* = \eta_{cr} - c_1 \Lambda_s / v \Rightarrow \eta_{cr} \neq \eta^* \leftrightarrow c_1 \Lambda_s \neq 0$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- $c_1 \Lambda_S \neq 0 \Leftrightarrow (\eta_{cr} \eta^*) \neq 0$
- $(\eta_{cr} \eta^*)$ has to be renormalised ...
- Consider renormalised quantity: $D_{\eta} \equiv d(r_0 M_{PS})/d\eta|_{\eta_{cr}}(\eta_{cr} \eta^*) \equiv Z_{\eta}(\eta_{cr} \eta^*)$

(日)、

э

• scaling behaviour of $M_{\rm PS}$ at η_{cr}

• $\sim 6\sigma$ significance from zero for M_{ps} at CL.

Test of no mechanism hypothesis

• It can be shown that in case of no mechanism presence, i.e. $c_1\Lambda_s=0,$ then $M_{\rm PS}\sim {\cal O}(b^4).$

No mechanism hypothesis not been supported by the data (8σ from zero).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

Conclusions & Outlook

- We have presented a toy-model that exemplifies a *novel* NP mechanism for elementary fermion mass generation.
- The toy model is a non-Abelian gauge model with an SU(N_f = 2)-doublet of strongly interacting fermions coupled to scalars through Yukawa and Wilson-like terms: at the *critical point*, where (fermion) *χ̃* invariance is recovered in Wigner phase (up to UV-effects) the model is *conjectured* to give rise in NG phase to dynamical *χ̃*-SSB and hence to non-perturbative fermion mass generation.
- The main physical implications of the conjecture above can be *verified/falsified* by numerical simulations of the toy-model (rather cheap in the quenched approximation).

Conclusions & Outlook

- A study at three values of the lattice spacing $(\sim 0.10, 0.12 \text{ and } 0.15 \text{ fm})$ in the quenched approximation has been presented.
- We have shown that the critical value of the Yukawa coupling in the Wigner phase at which $\tilde{\chi}$ is restored can be accurately determined. Then we explored the effects of dynamical SSB of the (restored) $\tilde{\chi}$ -symmetry in the NG phase which look very well compatible with the generation of a non-zero (effective) fermion mass and $M_{PS} \sim O(\Lambda_s)$ at the CL.
- These findings, based on a preliminary analysis, could be checked at a finer value of the lattice spacing in order to get more solid confirmation for the persistence of the dynamical mass generation mechanism in the continuum limit.

Conclusions & Outlook

- A study at three values of the lattice spacing $(\sim 0.10, 0.12 \text{ and } 0.15 \text{ fm})$ in the quenched approximation has been presented.
- We have shown that the critical value of the Yukawa coupling in the Wigner phase at which $\tilde{\chi}$ is restored can be accurately determined. Then we explored the effects of dynamical SSB of the (restored) $\tilde{\chi}$ -symmetry in the NG phase which look very well compatible with the generation of a non-zero (effective) fermion mass and $M_{PS} \sim O(\Lambda_s)$ at the CL.
- These findings, based on a preliminary analysis, could be checked at a finer value of the lattice spacing in order to get more solid confirmation for the persistence of the dynamical mass generation mechanism in the continuum limit.

Thank you for your attention!

Extra slides

<□ > < @ > < E > < E > E のQ @

Lattice action

$$\begin{split} S_{lat} &= b^4 \sum_x \left\{ \mathcal{L}_{kin}^{YM, plaq} [U] + \mathcal{L}_{kin}^{sca}(\Phi) + \mathcal{V}(\Phi) + \overline{\Psi} D_{lat} [U, \Phi] \Psi \right\}, \quad \Phi = \varphi_0 \, \mathrm{1\!\!1} + i \varphi_j \tau^j \, \mathrm{I\!\!2} \\ \mathcal{L}_{kin}^{sca}(\Phi) + \mathcal{V}(\Phi) &= \frac{1}{2} \operatorname{Tr} \left[\Phi^{\dagger}(-\partial_{\mu}^* \partial_{\mu}) \Phi \right] + \frac{\mu_0^2}{2} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + \frac{\lambda_0}{4} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 \, \mathrm{I\!\!2} \\ (D_{lat} [U, \Phi] \mathcal{V})(x) &= \gamma_\mu \widetilde{\nabla}_\mu \Psi(x) + \eta F(x) \Psi(x) - b^2 \rho_2^1 F(x) \widetilde{\nabla}_\mu \widetilde{\nabla}_\mu \Psi(x) \\ - b^2 \rho_4^1 \left[(\partial_{\mu} F)(x) U_{\mu}(x) \widetilde{\nabla}_{\mu} \Psi(x + \hat{\mu}) + (\partial_{\mu}^* F)(x) U_{\mu}^{\dagger}(x - \hat{\mu}) \widetilde{\nabla}_{\mu} \Psi(x - \hat{\mu}) \right] \, \mathrm{,} \end{split}$$
where $F \equiv \varphi_0 \, \mathrm{1\!\!1} + i \gamma_5 \tau^j \varphi_j$. Only derivatives $\widetilde{\nabla}_{\mu} &= \frac{1}{2} (\nabla_{\mu} + \nabla_{\mu}^*)$ acting on fermions, with

 $\nabla_\mu f(x) \equiv \tfrac{1}{b} (U_\mu(x) f(x+\hat\mu) - f(x)) \,, \quad \nabla^*_\mu f(x) \equiv \tfrac{1}{b} (f(x) - U^\dagger_\mu (x-\hat\mu)^f (x-\hat\mu)) \,.$

Term $\propto \rho$: Wilson-like, but with $d = 6 \Rightarrow$ fermion doublers do not decouple Extension to 2 generations: $\bar{\Psi}_{\ell} D_{lat}[U, \Phi] \Psi_{\ell} + \bar{\Psi}_{h} D_{lat}[U, \Phi] \Psi_{h}$ in fermionic L_{lat}

Determination of m^{ren}_{AWI}

- RCs UV quantities: can be calculated either in Wigner of in NG phases
- $1/Z_P^{had} = \langle 0|\bar{Q}\gamma_5 \frac{\tau^1}{2}Q|P_{meson}^1 \rangle|_{\eta_{cr},\mu \to 0+} r_0^2 \equiv G_{PS}^{Wig} r_0^2$ eval. in Wigner phase
- $Z_{\widetilde{V}}$: $Z_{\widetilde{V}}\langle 0|\partial_0 \widetilde{V}_0^2 | P_{\mathrm{meson}}^1 \rangle|_{\eta_{cr},\mu \to 0+} = 2\mu \langle 0|\bar{Q}\gamma_5 \frac{\tau^1}{2} Q| P_{\mathrm{meson}}^1 \rangle|_{\eta_{cr},\mu \to 0+}$

evaluated in NG phase

- $Z_{\widetilde{V}} = Z_{\widetilde{A}}$ (at η_{cr})
- $m_{AWI}^{ren} = \frac{Z_{\widetilde{V}}}{Z_P^{had}} m_{AWI}$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Check for finite size effects ($\beta = 5.85$ **)**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ