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Overview

• Widely accepted the incompletness of the SM: a number of
fundamental phenomena are not satisfactorily or not at all described
by/within it.

• This has motivated a vast variety of ingenious and original New
Physics proposals BSM.

• However, this task is proved to be non-trivial perhaps due to the fact
that SM is a renormalisable theory.

• SM describes elemenentary particle masses employing the symmetry
breaking SU(2)L × U(1)Y → U(1)em. The hierarchy pattern of
fermion masses (but also Higgs mass un-natural feature) lack deep
understanding.
Masses are rather accomodated by fitting to experimental data.



Overview

• Dynamical generation of elementary fermion mass

• Similar physics effect which generates 〈q̄q〉 6= 0

• where dynamical χSB triggered by an explicit χSB term i.e. fermion
mass or Wilson term.

• In (massless) LQCD with Wilson term Non-Perturbative contribution
(∝ ΛQCD) is accompanied by an 1/a divergent term.

• Axial WTI: ∂µ〈Ĵ5µ(x)Ô(0)〉 = 2(m0 − M̄(m0))〈P̂(x)Ô(0)〉+ O(a)

• where: M̄(m0) =
c0(1− d1)

a
+ c1(1− d1)ΛQCD + d1m0 + O(a)

• If we could set

m0 = c0/a → ∂µ〈Ĵ5µ(x)Ô(0)〉 = c1(1− d1)ΛQCD〈P̂(x)Ô(0)〉+ O(a)

• Separation of the two effects requires an infinite fine tuning
(→ naturalness problem).



Overview
• Dynamical generation of elementary fermion mass

I Proposal: QCD extended to a theory with enriched symmetry
for tackling naturalness problem.

I elementary fermion mass generation owing to NP mechanism
triggered by a Wilson-like (naively irrelevant) chiral breaking term.

• Simplest toy-model where the mechanism can be realised:

• SU(Nf = 2) doublet of strongly (SU(3)c ) interacting fermions
coupled to scalars via Yukawa and Wilson-like terms

• physics depends crucially on the phase (Wigner or NG)

• enhanced symmetry leads to 〈Φ〉-independence of fermion masses

• elementary fermion mass: mq = O(αs)Λs

• The intrinsic NP character of the mechanism requires lattice numerical
investigation of the toy model thanks to which we can falsify/support it.



Theoretical setup

• Toy-model: QCDNf =2 + Scalar field + Yukawa + Wilson

Ltoy = Lkin(Q,A,Φ) + V (Φ) + LY (Q,Φ) + LW (Q,A,Φ), with:

Lkin(Q,A,Φ) =
1

4
F a
µνF

a
µν + Q̄LγµDµQR + Q̄RγµDµQL +

1

2
Tr
[
∂Φ†∂Φ

]
V (Φ) =

1

2
µ2Tr

[
Φ†Φ

]
+

1

4
λ
(

Tr
[
Φ†Φ

])2
LY (Q,Φ) = η

(
Q̄LΦQR + Q̄R ΦQL

)
LW (Q,A,Φ) = ρ

b2

2

(
Q̄L
←−
D µΦDµQR + Q̄R

←−
D µΦ†DµQL

)
(where

←−
D µ =

←−
∂ µ + igsλ

aAa
µ, Dµ = ∂µ − igsλ

aAa
µ)

• Q: fermion SU(2) doublet coupled to SU(3) gauge field and to scalar field

through Yukawa and Wilson terms.

• Φ = (φ,−iτ2φ
∗) and φ isodoublet of complex scalar fields.

• b−1: UV cutoff.



Theoretical setup (contd.)

• χL × χR transformations are symmetry of Ltoy :

χL : χ̃L ⊗ (Φ→ ΩLΦ) χR : χ̃R ⊗ (Φ→ ΩR Φ)

χ̃L : QL → ΩLQL, χ̃R : QR → ΩRQR ,

Q̄L → Q̄LΩ†L Q̄R → Q̄R Ω†R

ΩL ∈ SU(2)L ΩR ∈ SU(2)R

• Exact symmetry χ ≡ χL × χR acting on fermions and scalars ⇒ NO

power divergent mass terms.

• The (fermion) χ̃ ≡ χ̃L × χ̃R transformations are not a symmetry for

generic (non-zero) η and ρ.

• P, C , T , gauge invariance are symmetries & power counting

renormalisation.



Theoretical setup (contd.)

• The shape of V (Φ) determines crucially the physical implications of the model

• When the scalar potential V (Φ) has one minimum

I χL × χR is realized à la Wigner.

• The (fermion) χ̃ ≡ χ̃L × χ̃R transformations generate Schwinger-Dyson Eqs

(unrenormalised).

• They get renormalised after considering the operator mixing procedure.

• PT operator mixings → NO χ̃−SSB phenomenon occurs → NO NP fermion

mass generation



Theoretical setup (contd.)

• Critical Model: χ̃-symmetry restoration occurs when the Yukawa term is

compensated by the Wilson term. This takes place (in the Wigner phase) at a

certain value of the Yukawa coupling.

• In fact, for J̃L,i
µ (or J̃R,i

µ ) get

∂µ〈Z̃J̃ JL,i
µ (x)O(0)〉 = (η − η(η; g2

s , ρ, λ))〈[Q̄Lτ
i ΦQR − h.c.](x)O(0)〉+ O(b2)

(SDE renrm/tion here analogous to chiral SDE renrm/tion in Bochicchio et al. NPB 1985)

I enforce the current J̃L,i
µ (or J̃R,i

µ ) conservation =⇒
η − η(η; g2

s , ρ, λ) = 0 → ηcr (g2
s , ρ, λ).

• The Low-Energy effective action (in the Wigner phase) reads

ΓWig

µ2
Φ
>0

= 1
4

(F · F ) + Q̄ /DQ + (η − ηcr )(Q̄LΦQR + h.c.) + 1
2
Tr
[
∂µΦ†∂µΦ

]
+ Vµ2

Φ>0(Φ)

• in the critical theory (χ̃ is a symmetry, up to O(b2))

I Scalars decoupled (up to cutoff effects) from quarks and gluons.

I no fermionic mass (mQ = 0 up to O(b2)).



Numerical investigation

• Lattice simulation details

• Lattice discretization, Llatt. with naive fermions and d = 6 Wilson term:

exact χ-symmetry respected.

• We limit our first study to the quenched approximation

• Quenching: independent generation of gauge (U) and scalar (Φ)

configurations.

⇒ it is quite certain that the mechanism under investigation, if

confirmed, survives quenching.



Numerical investigation

• Lattice simulation details

• To avoid “exceptional configurations” (→ due to fermions zero modes)

introduce twisted mass IR regulator Llatt.+iµQ̄γ5τ
3Q.

(Frezzotti, Grassi, Sint and Weisz, JHEP 2001)

⇒ at a cost of soft breaking of χL × χR , symmetry recovered after an

extrapolation to µ→ 0.

• Locally smeared Φ in Q̄Dlat [U,Φ]Q for noise reduction.



Numerical investigation

? simulations at three values of the lattice spacing

? β = 5.75 (b = 0.15 fm), β = 5.85 (b = 0.12 fm ) & β = 5.95 (b = 0.10 fm )

? (L/b,T/b) = (16, 32), (16, 40), (20, 48) (Wigner phase)

(L/b,T/b) = (16, 40), (20, 40), (24, 48) (NG phase)

L = 2.0− 2.4 fm, T = 4.8 fm.

? use lattice scale r0 = 0.5 fm (motivated from QCD, for illustration)

Guagnelli, Sommer and Wittig NPB 535 (1998) & Necco and Sommer NPB 622 (2002)

? ρ: for checking the validity of the mechanism it is sufficient to set

some reasonable value 6= 0;

In this first analysis: ρ = 1.96 in the Wigner & NG phase

? statistics: #configs (gauge× scalar) 480 (Wigner), 60-80 (NG)

@ several values of the Yukawa coupling η (and µ).

? set same λ0 in Wigner and NG phases (keep fixed scalar field

parameters by imposing conditions on (r0Mσ)2, λR and (r0vR )2

(NG phase)).



I Determination of ηcr in the Wigner phase

• Renormalised Schwinger-Dyson eqs of Ṽ 3 and Ã1-type (in the form of a

would be χ̃-WTI):

∂µJ̃
V 3
µ = (η − ηcr )D̃V 3 + O(b2)

∂µJ̃
A1
µ = (η − ηcr )D̃A1 + O(b2)

where

J̃V 3
µ (x) = J̃R 3

µ (x) + J̃L 3
µ (x)

J̃A1
µ (x) = J̃R 1

µ (x)− J̃L 1
µ (x)

J̃
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[
τ3

2
,Φ†

]
QL(y)

D̃A1(y) = Q̄L(y){Φ,
τ1

2
}QR (y)− Q̄R (y){

τ1

2
,Φ†}QL(y)



I Determination of ηcr in the Wigner phase

• A determination of ηcr could be obtained employing the ”WI” ratio i.e.

compute:

rVWI (η; g 2
s , λ0, ρ, µ) ≡

∂0

∑
x〈J̃

V 3
0 (x, x0)D̃V 3(0)〉∑

x〈D̃V 3(x, x0)D̃V 3(0)〉

at several values of η (and µQ ) and extrapolate to

rVWI (ηcr ; g 2
s , λ0, ρ, µ = 0)→ 0 .

But signal is not sufficiently good due to noise of scalar correlation for euclidian

time separation at around 1 fm.

• Alternative determination of ηcr :

r alt
AWI (η; g 2

s , λ0, ρ, µ) =

∑
x

∑
y〈P

1(0)[∂0J̃
A1
0 ](x)φ0(y)〉∑

x

∑
y〈P1(0)DA1(x)φ0(y)〉

with: D̃A1(x) = Q̄L(x){Φ, τ
1

2
}QR (x)− Q̄R (x){ τ

1

2
,Φ†}QL(x), P1 = Q̄γ5τ

1/2Q,

φ0 = 1
4
Tr[Φ + Φ†] = 1

2
Tr[Φ], y0 = x0 + τ (τ = fixed (in practice ∼ 0.6 fm)).



I Determination of ηcr in the Wigner phase
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β = 5.75; η = −1.190; bµ = 0.0280

x0/b

ra
lt

A
W

I
(x

0
)

141210864

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

[β = 5.85]

β = 5.85; η = −1.137; bµ = 0.0120

x0/b

ra
lt

A
W

I
(x

0
)

1816141210864

0.00

-0.02

-0.04

-0.06

-0.08

-0.10

-0.12

-0.14

-0.16



I Determination of ηcr in the Wigner phase

[β = 5.75]
ηcr = −1.271(7)
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• r alt
AWI inter/extrapolation to zero after

taking the limit µ→ 0

⇒ A few per mille statistical error for

ηcr determination (Preliminary results!).



I Further investigation in the Wigner phase

• tm µ-term breaks softly χ-symmetry → at all η Goldstone bosons have mass

vanishing linearly in µ.
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I Features and properties of the toy-model in NG-phase

• V (Φ) of mexican hat shape → χL × χR realised à la NG.

• χL × χR spontaneously broken: Φ = v + σ + i~τ~π, 〈Φ〉 = v 6= 0.

• LW (Q,A,Φ) = ρb2

2

(
Q̄L
←−
D µΦDµQR + h.c.

)
r↔bvρ∼

a↔b
LQCD

W (Q,A) = − ar
2

(
Q̄LD

2QR + h.c.
)
.

• In the critical theory η = ηcr :

I the (Yukawa) mass term, vQ̄Q, gets cancelled.

I χ̃− breaking due to residual O(b2) effects is expected to trigger dynamical χSB.



I Features and properties of the toy-model in NG-phase

⇒ Look for dynamically generated fermion mass:

• NP mass term has to be χL × χR invariant (and under chiral variation can be

accomodated in the χ̃ WTI’s).

Note that a term like m[Q̄LQR + Q̄RQL] is not χL × χR invariant.

• At generic η, two χ̃ breaking operators are expected to arise:

Yukawa induced + dynamically generated (← conjecture)

• ΓNG = . . .+ (η − ηcr )(Q̄L〈Φ〉QR + h.c.) + c1Λs (Q̄LUQR + h.c.) where

U =
Φ√
Φ†Φ

=
(v + σ)11 + i~τ ~ϕ√

v 2 + 2vσ + σ2 + ~ϕ~ϕ
' 11 + i

~τ ~ϕ

v
+ . . .

and Λs ≡ RGI NP mass scale.

− U is a non-analytic function of Φ, but transforms like Φ under χL × χR ;

obviously U can not be defined in the Wigner phase (〈Φ〉 = 0) → no NP mass or

mixings in the Wigner phase.

− Note that (χ-inv. term): c1Λs (Q̄LUQR + h.c.) ' c1ΛsQ̄Q + . . .



I Features and properties of the toy-model in NG-phase

• Work at the same lattice parameters (β, λ, ρ) as in the Wigner phase

• Compute WTI quark mass: mAWI =
∂0〈J̃A±

0 (x)P±(y)〉
〈P±(x)P±(y)〉 in the NG-phase (where

P± = Q̄γ5τ
±Q - pseudoscalar density) & Mps from 〈P±(x)P±(y)〉.



I Features and properties of the toy-model in NG-phase
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I Features and properties of the toy-model in NG-phase

• simultaneous polynomial fits for M2
PS and mAWI in η and in µ

(example: β = 5.85).

• extra/interpolation to ηcr (at µ→ 0).
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• similar for MPS.



I Features and properties of the toy-model in NG-phase

• scaling behaviour of M2
PS and mAWI at ηcr
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• mAWI = (η − ηcr )v + c1Λs
η = ηcr−−−−→ mAWI = c1Λs

• mAWI vanishes at η∗ = ηcr − c1Λs/v ⇒ ηcr 6= η∗ ↔ c1Λs 6= 0



I Features and properties of the toy-model in NG-phase

• c1ΛS 6= 0⇔ (ηcr − η∗) 6= 0

• (ηcr − η∗) has to be renormalised ...

• Consider renormalised quantity: Dη ≡ d(r0MPS )/dη|ηcr (ηcr − η∗) ≡ Zη(ηcr − η∗)
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I Features and properties of the toy-model in NG-phase

• scaling behaviour of MPS at ηcr
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• ∼ 6σ significance from zero for Mps at CL.



I Test of no mechanism hypothesis

• It can be shown that in case of no mechanism presence, i.e. c1Λs = 0, then

MPS ∼ O(b4).

No mechanism hypothesis not been supported by the data ( 8σ from zero).



Conclusions & Outlook

• We have presented a toy-model that exemplifies a novel NP
mechanism for elementary fermion mass generation.

• The toy model is a non-Abelian gauge model with an
SU(Nf = 2)-doublet of strongly interacting fermions coupled
to scalars through Yukawa and Wilson-like terms: at the
critical point, where (fermion) χ̃ invariance is recovered in
Wigner phase (up to UV-effects) the model is conjectured to
give rise in NG phase to dynamical χ̃-SSB and hence to
non-perturbative fermion mass generation.

• The main physical implications of the conjecture above can be
verified/falsified by numerical simulations of the toy-model
(rather cheap in the quenched approximation).



Conclusions & Outlook

• A study at three values of the lattice spacing
(∼ 0.10, 0.12 and 0.15 fm) in the quenched approximation
has been presented.

• We have shown that the critical value of the Yukawa coupling
in the Wigner phase at which χ̃ is restored can be accurately
determined. Then we explored the effects of dynamical SSB
of the (restored) χ̃-symmetry in the NG phase which look very
well compatible with the generation of a non-zero (effective)
fermion mass and MPS ∼ O(Λs) at the CL.

• These findings, based on a preliminary analysis, could be
checked at a finer value of the lattice spacing in order to get
more solid confirmation for the persistence of the dynamical
mass generation mechanism in the continuum limit.
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Thank you for your attention!



Extra slides



I Lattice action



I Determination of mren
AWI

• RCs UV quantities: can be calculated either in Wigner of in NG phases

• 1/Z had
P = 〈0|Q̄γ5

τ1

2
Q|P1

meson〉|ηcr ,µ→0+ r2
0 ≡ G Wig

PS r2
0 eval. in Wigner phase

• Z
Ṽ

: Z
Ṽ
〈0|∂0Ṽ 2

0 |P1
meson〉|ηcr ,µ→0+ = 2µ〈0|Q̄γ5

τ1

2
Q|P1

meson〉|ηcr ,µ→0+

evaluated in NG phase

• Z
Ṽ

= Z
Ã

(at ηcr )

• mren
AWI =

Z
Ṽ

Z had
P

mAWI



I Determination of mren
AWI



I Check for finite size effects (β = 5.85)


