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Definition of QCD on a Euclidean space-time lattice with lattice
spacing a
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We start out with a nicely local action.

Goal: Numerical evaluation evaluation of the discretized path integral.
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Wick contractions

Grassmann variables not suitable for numerical calculations

First step is to remove them from the problem

Use Wick’s theorem to integrate them out in observable

(P*(x)P*(0)) = —(tr{7sDy " (x,0)75D; " (0,x) })
and also from the action with Dirac operator D
/ [dy][dd]e’P? = detD .

Left with integral over gauge variables

(P(x)P(0)) = — Z [dU){ HdetD U,my) te % Wtr {45 D" (x,0)y:D ' (0,x)}

Local action and operaiors — non-local determinant and propagators
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Is giving up locality a good idea?

Yes
¢ Makes numerical computations possible

e Particularly successful in pseudo-scalar sector
— No signal-to-noise problem

e Unnatural

e Local updates have cost x V

e Leads to global operations

e Hinders use of mulfilevel strategies
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Multilevel strategies: Classical examples |
Pure gauge theory
1
Se =1 ; [1- NRetrUp]

Multi-hit qlgorithm Parisi,Petronzio, Rapuano’ 83

W) = = [ [dUle Ve W
Z
= i dU efggi dXe PRV wx
VA Z
1

with V the staple attached 1o link X.
Keep fixed all links outside of loop.
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Efficient because action has only contributions from the vicinity of the
updated link.

For each link use Ny hits = corresponds to N7 configurations.
Larger loops — more configurations.

BUT: more configurations # more independent configurations.
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Classical examples Il

Multilevel for Wilson loops
Infroduce two-link building blocks

Keep links between (thick) time slices fixed

Independent updates possible.

Lischer & Weisz ’01
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Classical examples Il

Multilevel for Wilson loops Liischer & Weisz ’01

W)= ® (=)s ® ()4 )up
= (L1(U1) @ ({T2(Ur, U2))1 ® (T2(Uz, Us))2 ® (L3(Us))1,3
Multilevel!
Use hierarcy of thickness of time slices to reduce effect of fixed links.

Can essentially solve exponential signal-to-noise problem.
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Exponential signal-to-noise problems get more severe with the
separations in the n-point function

Multilevel strategies can effectively increase the statistics with the
extension of the objects

With the right setup, they can solve the s-to-n problems

Locality is an essential requirement
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Fermions

Gauge actions are typically local
— terms involving only links on one (or a few) plaquette

For fermions such a formulation involves Grassmann variables
[dulidiie™” — detD.

Represented by bosonic pseudofermion fields Weingarten’ 81
det(D'D) = 7 [ [elle')exp(~ID "ol
This action is rather non-local for the ¢ fields.

Empirical observation: D=1 (x,y) o« e”*¥Im= for large |x — y|

() D(y)
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A New Approach to the Problem of Dynamical Quarks

in Numerical Simulations of Lattice QCD

Martin Liischer

Deutsches Elektronen-Synchrotron DESY
Notkestrasse 85, D-22603 Hamburg, Germany

Abstract

| Lattice QCD |with an even number of degenerate quark flavours is shown
o be a limit of a local bosonic field theory. |The action of the bosonic theory
is real and bounded from below so that standard simulation algorithms can

be expected to apply. The feasibility of such calculations is discussed, but no
practical tests have yet been made.

Source: Title page of hep-lat/9311007
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Multi-boson algorithm

Use a polynomial which approximates f(x) = % in a suitable range
[0,1).

Then we get

n/2 1

2 _
det@ _gdetmtzk) @ —2})] HdeﬂQ )? + vl

which can easily be represented by bosonic fields ¢

Sub = > 1(Q — 1) xl” + vi ||
k
Local action — local update algorithm

Approximation — number of MB fields depends on conditioning
number of @



Multi-boson algorithm

Why is this currently not used?
Light fermions might need n in the hundreds for a good approximation.

With increasing n, systemn becomes stiff
Autocorrelation times rise « n Jegerlehner’ 95
— Problem traced back to U, ,U{ ,, terms in eff. action

Further developements, but currently no longer in use
de Forcrand, Montvay, Scholz,...

Advantage of a local formulation
“
Disadvantage of sum over many terms

Maybe asking for a nearest neighbor interaction is asking too much?



Feasibility of domain decomposition is intimately linked to locality

Again proposal by Luscher DD-HMC

© © 0 0 o o

Source:hep-1at/0409106

Divide latftice in two regions: @ and Q* Lischer ’04

Q = Qo + Qo+ + Qoa + Qan~

from which follows a decomposition of the determinant

det @ = det Q det Qu- det(1 — Poo- Qg Qo0Qql Qoa-)
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Reminder: Schur complement

r r

_( @ Qor
Q= (Qar* QF*)

For the Wilson Dirac operator, @sr and @or+ act on the boundaries.

Q= 1 QarQ;,} Sr 0 1 0
0 1 0 Qr-)\@Qr'Qor~ 1
with the Schur complement
Sr = Qr — QorQr'Qor-
For the determinant follows
det @ = det Sr - det Qr+

Can also be used to factorize propagator.
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Domain decompaosition

det @ = det Qq det Qo+ det(1 — Poo Qo' QoaRq' Qoo+ )
Each determinant represented by pseudofermions

Used in Ny = 2 flavor CLS simulations, a variant also by PACS-CS

Actual implementation very much geared towards cluster computing
(at the time)

Turned out to be inferior to/less flexible than standard HMC w/
Hasenbusch spliting

Large “correction term”

Locality on a block level seems a great idea.
Can maybe be recast with different guiding principles.



New factorization of the determinant
Ce, Giusti, S’16

1 _
4=y / [dU]I;[ det Q(mys) e %U1A
Sea quark contribution is given by fermion determinant

e C [0} C e C

Qe,e Qe,c 0
detQ = det Qe,c Qc,c Qc,o

0 Qu,c Qo,o
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Basic steps

Pull out central contribution

Qe,e - Qe,cQ;lec,e _Qe,cQ;lec,o )
’

det @ = det Q. det < . )
_QO,CQC_,C Qc,e Qo,o - QO,CQC_,C Qc,o

Factor diagonal terms
1 —8,1Qe,cQ 1 Qe 0
det @ = det @, det S, det S, det s
=810, 1 Qe e 1
with Schur complements

Se - Qe,e - Qe,ch_,lec,e
So = Qo,o - Qo,ch_,lec,o

18/31



det Q = det Q... det Sy detS; det(1 — PoyQq! @1,2Q; Q1.0)

Loopsin 0 and 1, passing through O Loopsin T and 2, passing through 2

det Se - det(Qe,e - Qe,ch_,lec,e) det So — dEt(Qo,o - QG,CQ;lec,o)
Loopsin 1 det @, ,
Loops stretching O, 1, 2 det(1 — PaAOQK_Z;QAIJQK_)gI‘QAI,O)
0 1 2

Q' O
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Comparison with DD-HMC

Q) Q1
det @ = det Q. det S, detS, det(1 — Poa, Qo QeoQq; Qn...)
Propagators between separated boundaries

Handle to make them small
e o] e o] e o]

det @ = det Qe det Qoo det(1 — Pon,Qre Q4. Qo0 @n,.)
Propagators in correction term “loop back” — no suppression

No reason why last term should be small. 00731



Reincarnation of the MB algorithm

det(1 — w) = det(1 — Poa, Qo Qn.., Qu; @n...)
This operator is quite well conditioned.

Contains propagators over distance A
— exponential suppression with e =™,

Using multibosons leads to a factorization of the action.

Im{d}

—0.4 —0.2 0.0 0.2 0.4
Re{d}

Plot: Eigenvalues of w in complex plane.
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n/2

det{l —w} ~ H up —w) H(up —wh)™!
k=1

Let us go one step back in the derivation
det(ur — w) = det(uy, — P3A6Q55Q0,0Q5;Qc,e) =detW
zPoy, Por,Qq: Qn,,, Pon,
W, = ¢ .
Por,Qq; Q. Pox, 2Pay,

This leads to a contribution to the action which is local in the blocks

9 2
Si = Wyl = |Vie + @5lQa.,b0| +|Vion + Q5Qu.. 00

Note: Works flavor by flavor.
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Full action

Fermion action

det QQ'
det{l1—-R,+1(1 —w)}?

— C’/[d@dq&j]e_‘“e%ei%ﬁ /[dgbcdd]e"Q;cl%‘z«

1, 2 n .
/[d(]sod(}b:g]eilPAOQQg @ol . H {/[kadXﬂe_‘WMxk‘Z} 7

k=1

with
( z2Pya, PBAeQQ*}QAc,uPBAo>
W, = : :

-1
Pon,Qq; Qn. . Pox, zPay,

At fixed fields ¢, the gauge field dependence of each term is local
within the blocks.

Lesser degree of locality, but sufficient for purpose of multilevel.
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Practical test

Nt = 2 flavors of non-perturbatively improved Wilson fermions
m, = 440 MeV
laftice spacing a = 0.065fm

64 x 322 lattice, open boundary conditions in time

thickness of central time slice A = 12a

N, = 12 multiboson fields

....much less than for in the original MB

Reweighting factor to correct for polynomial approximation negligible.

— practically exact action

24



L B R

"0'(y)

Start with set of Ny level-0 gauge field configurations
Define the boundary field Ug

({0(x) - OHO'(») - O'})

— 7 [ 1dUsle™ """ {0(x) ~ ONL(UR) 0'(5) ~ O'}u(Un)

Estimate integrals over variables in L and R with Ny configs per Up

[0()]1(Us) = / e STV O ()

O (Us) = / [dUrle Vs U0 0 (y)
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Requirements

For multi-level to work we need two ingredients
1) Factorized observable

2) Factorized action

Since we have used Wick'’s theorem, this is not obvious for observables
and for the QCD action

Quark-line connected

(P (x)P™ (y))
1 1 1 ( ’x)%] <>

—S,[U
== [dU]det D e 5! ]tr[Dmu(x,y)'ysD

mq
Quark-line disconnected

PP )
1 O O

Z/[dU detDe tr[D1 (x,x)%]tr[Df(y?y)%]

my mg
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Factorizing propagators

A

_ 1
Pp,D7'Py, = —Pa,D;,'Dio i Dy Pa,

with
w = P8A0D5§D1,2D51}D1,0
For A 0(0.5fm), w is small ~ e =¥

— Neumann series converges well for AM ~ 1.
27731



Factorizing propagators

Py, D7'Py, 0 1 2

_ 1 _
= —Pa, D, Drog—Do, Pa,
w= P8A0D6§D1,2D5%D1,0

P.\ZDULI(’x.,z)P;,\l
— all paths from x to boundary 1-0 which do not enter 0.

P ‘c)AuD5§ (2,5)Pano
— all paths to ¥ from boundary 1-0 which do not enter 2.

Leading term in Neumann series represents all paths not looping back
from2to0

Higher orders in w generate additional loops.
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Test for gluonic observalbes
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Quark-line disconnected

(P (o) P (y0))
107
1025 e
S ,,,,,,,",'!-!“"-',,,fe’!'- ,,,,, g
- 108
z 1071
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Nine independent level-1 configurations.

Fully factorized contribution profits as expected

Single correction term falls off with half pion mass, improves with /N7,
Double correction term falls off with the pion mass.
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Summary

Locality is an important property of quantum field theory.

It can be used to solve exponential signal to noise problem in n point
functions.

See also Luscher’s *master field” — giant lattices can profit from local
formulations

True locality is difficult to achieve for fermions.
Two-level methods work.

Demonstrated for quark-line disconnected graphs
Gluonic correlation functions (g(x)q(y)) Garcia Vera, SS, 16
Signal-to-noise require VN « €™ — N o ™

Get twice as far with same effort. — Generalize to multilevel.



