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Motivation

Definition of QCD on a Euclidean space-time lattice with lattice
spacing a

µU  (x)x

a

q(  )

〈A[ψ̄, ψ,U]〉 =
1
Z

∫
[dU][dψ][dψ̄]e−S[ψ̄,ψ,U]A[ψ̄, ψ,U]

We start out with a nicely local action.

Goal: Numerical evaluation evaluation of the discretized path integral.

Sf =
∑

f

ψ̄f Dw(mf )ψf with Dw =
3∑

µ=0

1
2
{γµ(∇∗µ +∇µ)−∇∗µ∇µ}

Sg =
1
g2

0

∑
p

tr{1−Up}
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Wick contractions

Grassmann variables not suitable for numerical calculations

First step is to remove them from the problem

Use Wick’s theorem to integrate them out in observable

〈Pud(x)Pdu(0)〉 = −〈tr
{
γ5D−1

u (x, 0)γ5D−1
d (0, x)

}
〉

and also from the action with Dirac operator D∫
[dψ][dψ̄]eψ̄Dψ = det D .

Left with integral over gauge variables

〈P(x)P(0)〉 = − 1
Z

∫
[dU]

{∏
f

det D(U,mf )
}

e−Sg[U]tr
{
γ5 D−1(x, 0)γ5D−1(0, x)

}
Local action and operators→ non-local determinant and propagators
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Locality

Is giving up locality a good idea?

Yes

• Makes numerical computations possible

• Particularly successful in pseudo-scalar sector
→ no signal-to-noise problem

No

• Unnatural

• Local updates have cost ∝ V

• Leads to global operations

• Hinders use of multilevel strategies
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Multilevel strategies: Classical examples I

Pure gauge theory

Sg = β
∑

p

[
1− 1

N
Re trUp

]
Multi-hit algorithm Parisi,Petronzio,Rapuano’83

〈trW〉 =
1
Z

∫
[dU]e−Sg[U]tr W

=
1
Z̃

∫
[dU]e−S̄g 1

Z1

∫
dXe−βRe trVXtrW̃X

with V the staple attached to link X.
Keep fixed all links outside of loop.
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Multi-hit

Efficient because action has only contributions from the vicinity of the
updated link.

For each link use N1 hits⇒ corresponds to N#links
1 configurations.

Larger loops→more configurations.

BUT: more configurations 6= more independent configurations.
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Classical examples II

Multilevel for Wilson loops Lüscher & Weisz ’01

Introduce two-link building blocks

Keep links between (thick) time slices fixed

Independent updates possible.
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Classical examples II

Multilevel for Wilson loops Lüscher & Weisz ’01

〈W〉 = 〈 〈[〉1 ⊗ 〈=〉2 ⊗ 〈=〉3 ⊗ 〈]〉4 〉UB

= 〈L1(U1)⊗ 〈〈T2(U1,U2)〉1 ⊗ 〈T2(U2,U3)〉2 ⊗ 〈L∗3(U3)〉1,3

Multilevel!

Use hierarcy of thickness of time slices to reduce effect of fixed links.

Can essentially solve exponential signal-to-noise problem.
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Remarks

Exponential signal-to-noise problems get more severe with the
separations in the n-point function

Multilevel strategies can effectively increase the statistics with the
extension of the objects

With the right setup, they can solve the s-to-n problems

Locality is an essential requirement
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Fermions

Gauge actions are typically local
→ terms involving only links on one (or a few) plaquette

For fermions such a formulation involves Grassmann variables

∫
[dψ][dψ̄]eψ̄Dψ = det D .

Represented by bosonic pseudofermion fields Weingarten’81

det(D†D) =
1

Zφ

∫
[φ][φ†] exp(−|D−1φ|2)

This action is rather non-local for the φ fields.

Empirical observation: D−1(x, y) ∝ e−|x−y|mπ for large |x− y|

Φ(x) Φ(y)

~1/mπ
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Multi-boson algorithm

Source: Title page of hep-lat/9311007
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Multi-boson algorithm

Use a polynomial which approximates f (x) = 1
x in a suitable range

[0, 1).

P(x) =

n∑
k=0

(1− x)k =

n/2∏
k=1

(x− zk)(x− z∗k)
n→∞→ 1

x

Then we get

det Q2 =

n/2∏
k=1

1
det[(Q2 − zk)(Q2 − z∗k)]

=
n∏

k=1

1
det[(Q− µk)2 + ν2

k ]

which can easily be represented by bosonic fields φk

Smb =
∑

k

|(Q− µk)φk|2 + ν2
k |φk|2

with
√

zk = µk + iνk.
Local action→ local update algorithm

Approximation→ number of MB fields depends on conditioning
number of Q2.
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Multi-boson algorithm

Why is this currently not used?

Light fermions might need n in the hundreds for a good approximation.

With increasing n, system becomes stiff

Autocorrelation times rise ∝ n Jegerlehner’95

→ Problem traced back to Ux,µU†x,µ terms in eff. action

Further developements, but currently no longer in use
de Forcrand, Montvay, Scholz,...

Advantage of a local formulation
↔
Disadvantage of sum over many terms

Maybe asking for a nearest neighbor interaction is asking too much?
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Domain decomposition

Feasibility of domain decomposition is intimately linked to locality

Again proposal by Lüscher DD-HMC

Source:hep-lat/0409106

Divide lattice in two regions: Ω and Ω∗ Lüscher ’04

Q = QΩ + QΩ∗ + Q∂Ω + Q∂Ω∗

from which follows a decomposition of the determinant

det Q = det QΩ det QΩ∗ det(1− P∂Ω∗Q−1
Ω Q∂ΩQ−1

Ω∗Q∂Ω∗)
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Reminder: Schur complement

   Γ                 Γ*

Q =

(
QΓ Q∂Γ

Q∂Γ∗ QΓ∗

)
For the Wilson Dirac operator, Q∂Γ and Q∂Γ∗ act on the boundaries.

Q =

(
1 Q∂ΓQ−1

Γ∗

0 1

)(
SΓ 0
0 QΓ∗

)(
1 0

Q−1
Γ∗Q∂Γ∗ 1

)
with the Schur complement

SΓ = QΓ −Q∂ΓQ−1
Γ∗Q∂Γ∗

For the determinant follows

det Q = det SΓ · det QΓ∗

Can also be used to factorize propagator.
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Domain decomposition

det Q = det QΩ det QΩ∗ det(1− P∂Ω∗Q−1
Ω Q∂ΩQ−1

Ω∗Q∂Ω∗)

Each determinant represented by pseudofermions

Used in Nf = 2 flavor CLS simulations, a variant also by PACS-CS

Actual implementation very much geared towards cluster computing
(at the time)

Turned out to be inferior to/less flexible than standard HMC w/
Hasenbusch spliting

Large “correction term”

Locality on a block level seems a great idea.

Can maybe be recast with different guiding principles.
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New factorization of the determinant

Ce, Giusti, S’16

〈A〉 =
1
Z

∫
[dU]

∏
f

det Q(mf ) e−Sg[U]A

Sea quark contribution is given by fermion determinant

e          c            o             c            e            c

det Q = det

Qe,e Qe,c 0
Qe,c Qc,c Qc,o

0 Qo,c Qo,o
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Basic steps

e          c            o             c            e            c

Pull out central contribution

det Q = det Qc,c det

(
Qe,e −Qe,cQ−1

c,c Qc,e −Qe,cQ−1
c,c Qc,o

−Qo,cQ−1
c,c Qc,e Qo,o −Qo,cQ−1

c,c Qc,o

)
,

Factor diagonal terms

det Q = det Qc,c det Se det So det

 1 −S−1
e Qe,cQ−1

c,c Qc,o

−S−1
o Qo,cQ−1

c,c Qc,e 1

 ,

with Schur complements

Se = Qe,e −Qe,cQ−1
c,c Qc,e

So = Qo,o −Qo,cQ−1
c,c Qc,o
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Decomposition

det Q = det Qc,c det S0 det S2 det(1− P∂0Q−1
Ω∗0

Q1,2Q−1
Ω∗1

Q1,0)

Loops in 0 and 1, passing through 0

det Se = det(Qe,e −Qe,cQ−1
c,c Qc,e)

Loops in 1 and 2, passing through 2

det So = det(Qo,o −Qo,cQ−1
c,c Qc,o)

Loops in 1

Loops stretching 0, 1, 2

det QΛ1,1

det(1− P∂Λ0 Q−1
Ω∗e

QΛ1,2 Q−1
Ω∗o

QΛ1,0 )

0              1              2
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Comparison with DD-HMC

e          c            o             c            e            c

Ωo
*

Ω1
*Ω1

*

det Q = det Qc,c det Se det So det(1− P∂Λe Q
−1
Ω∗e

Qc,oQ−1
Ω∗o

QΛc,e )

Propagators between separated boundaries

Handle to make them small
e            o            e          o            e           o  

det Q = det Qe,e det Qo,o det(1− P∂Λe Q
−1
e,e QΛe,o Q−1

o,o QΛo,e )

Propagators in correction term “loop back”→ no suppression

No reason why last term should be small.
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Reincarnation of the MB algorithm

det(1−w) = det(1− P∂Λe Q
−1
Ω∗e

QΛc,o Q−1
Ω∗o

QΛc,e )

This operator is quite well conditioned.

Contains propagators over distance ∆
→ exponential suppression with e−∆mπ .

Using multibosons leads to a factorization of the action.

−0.4 −0.2 0.0 0.2 0.4
Re{δ}

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Im
{δ
}

Plot: Eigenvalues of w in complex plane.
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Multiboson action

det{1−w} ≈
n/2∏
k=1

(uk −w)−1(u∗k −w†)−1

Let us go one step back in the derivation

det(uk −w) = det(uk − P∂Λe Q
−1
Ω∗e

Qc,oQ−1
Ω∗o

Qc,e) = det W√uk

Wz =

 z P∂Λe P∂Λe Q
−1
Ω∗e

QΛc,o P∂Λo

P∂Λo Q−1
Ω∗o

QΛc,e P∂Λe z P∂Λo

 .

This leads to a contribution to the action which is local in the blocks

Sk = |W√ukφ|
2 =

∣∣∣√ukφe + Q−1
Ω∗e

QΛc,oφo

∣∣∣2 +
∣∣∣√ukφo + Q−1

Ω∗o
QΛc,eφe

∣∣∣2
Note: Works flavor by flavor.
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Full action

Fermion action

det QQ†

det{1− Rn+1(1−w)}2

= C′
∫

[dφedφ†e ]e
−|PΛe Q−1

Ω∗e
φe|2

∫
[dφcdφ†c ]e−|Q

−1
c,c φo|2 ·∫

[dφodφ†o ]e
−|PΛo Q−1

Ω∗o
φo|2 ·

n∏
k=1

{∫
[dχkdχ†k]e−|W

√ukχk|
2
}
,

with

Wz =

 z P∂Λe P∂Λe Q
−1
Ω∗e

QΛc,o P∂Λo

P∂Λo Q−1
Ω∗o

QΛc,e P∂Λe z P∂Λo

 .

At fixed fields φ, the gauge field dependence of each term is local
within the blocks.

Lesser degree of locality, but sufficient for purpose of multilevel.
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Practical test

Nf = 2 flavors of non-perturbatively improved Wilson fermions

mπ = 440 MeV

lattice spacing a = 0.065 fm

64× 323 lattice, open boundary conditions in time

thickness of central time slice ∆ = 12a

Nb = 12 multiboson fields

....much less than for in the original MB

Reweighting factor to correct for polynomial approximation negligible.

→ practically exact action
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Multilevel: Two active regions

O(x)
O'(y)

L            B            R

Start with set of N0 level-0 gauge field configurations

Define the boundary field UB

〈{O(x)− Ō}{O′(y)− Ō′}〉

=
1

ZB

∫
[dUB]e−SB[UB][{O(x)− Ō}]L(UB)[{O′(y)− Ō′}]R(UB)

Estimate integrals over variables in L and R with N1 configs per UB

[O(x)]L(UB) =
1

ZL

∫
[dUL]e−S(UB,UL)O(x)

[O(y)]R(UB) =
1

ZR

∫
[dUR]e−S(UB,UR)O′(y)
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Requirements

For multi-level to work we need two ingredients

1) Factorized observable

2) Factorized action

Since we have used Wick’s theorem, this is not obvious for observables
and for the QCD action

Quark-line connected

〈Pud(x)Pdu(y)〉

=− 1
Z

∫
[dU]det D e−Sg[U]tr

[ 1
Dmu

(x, y)γ5
1

Dmd

(y, x)γ5
]

Quark-line disconnected

〈Puu(x)Pdd(y)〉

=
1
Z

∫
[dU]det D e−Sg[U]tr

[ 1
Dmu

(x, x)γ5
]
tr
[ 1

Dmd

(y, y)γ5
]
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Factorizing propagators

0           1            2

Ω

1

*

Ω*
0

PΛ2 D−1PΛ0 = −PΛ2 D−1
Ω∗1

D1,0
1

1−w
D−1

Ω∗0
PΛ0

with
w = P∂Λ0 D−1

Ω∗0
D1,2D−1

Ω∗1
D1,0

For ∆ O(0.5fm), w is small ∼ e−∆M

→ Neumann series converges well for ∆M ∼ 1.
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Factorizing propagators

PΛ2 D−1PΛ0

= −PΛ2 D−1
Ω∗1

D1,0
1

1−w
D−1

Ω∗0
PΛ0

w = P∂Λ0 D−1
Ω∗0

D1,2D−1
Ω∗1

D1,0

0           1            2

PΛ2 D−1
Ω∗1

(x, z)P∂Λ1

→ all paths from x to boundary 1-0 which do not enter 0.

P∂Λ0 D−1
Ω∗0

(z, y)P∂Λ0

→ all paths to y from boundary 1-0 which do not enter 2.

Leading term in Neumann series represents all paths not looping back
from 2 to 0

Higher orders in w generate additional loops.
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Multilevel

Test for gluonic observalbes

Ce(x0, y0) =
1
L3 〈ē(x0)〉 ; Cqq(x0, y0) =

1
L3 〈q̄(x0)q̄(y0)〉

with

ē(x0) =
1
4

∑
~x

Fa
µν(x)Fa

µν(x) ; q̄(x0) =
1

64π2

∑
~x

εµνρσFa
µν(x)Fa

ρσ(x)

10 20 30 40 50 60
x0

0.000

0.001

0.002

0.003

0.004

0.005

√ v
ar

(C
e
(x

0
)) δ

δ√
10

δ√
45

n1 =1 n1 =10 n1 =45

0 10 20 30 40 50 60
|x0−y0 |

10-7

10-6

10-5

10-4

√ v
ar

(C
qq
(x

0
,y

0
))

δ

δ
10

δ
45

n1 =1 n1 =10 n1 =45
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Quark-line disconnected

〈Puu(x0)Pdd(y0)〉

0 10 20 30 40 50 60
|y0 − x0|

10−6

10−5

10−4

10−3

10−2

10−1

√
va

r(
C
P
d
(x

0
,y

0
))

δ

δ
9

C
(f)
Pd

n1 = 1 n̄1 = 9

0 10 20 30 40 50 60
|y0 − x0|

δ
δ√
9

C
(r1)
Pd

n1 = 1 n̄1 = 9

0 10 20 30 40 50 60
|y0 − x0|

δ
δ√
9

C
(r2)
Pd

n1 = 1 n̄1 = 9

Nine independent level-1 configurations.

Fully factorized contribution profits as expected

Single correction term falls off with half pion mass, improves with
√

N1.

Double correction term falls off with the pion mass.
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Summary

Locality is an important property of quantum field theory.

It can be used to solve exponential signal to noise problem in n point
functions.

See also Lüscher’s “master field”→ giant lattices can profit from local
formulations

True locality is difficult to achieve for fermions.

Two-level methods work.

Demonstrated for quark-line disconnected graphs

Gluonic correlation functions 〈q(x)q(y)〉 Garcia Vera, SS, ’16

Signal-to-noise require
√

N ∝ emx0 −→ N ∝ emx0

Get twice as far with same effort. → Generalize to multilevel.
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