Form factors for *b* hadron decays from lattice QCD

Stefan Meinel

Frontiers in Lattice Quantum Field Theory, IFT Madrid, May 2018

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 *b* meson decay form factors
- 5 *b* baryon decay form factors
- 6 $\Lambda_b \to \Lambda_c^*$ form factors

Why search for new physics in b decays?

- The *b* is the heaviest quark that forms hadrons. Consequently there are many possible decay channels (also with τ leptons).
- The dominant decays are already CKM-suppressed:

 $|V_{cb}|^2 \approx 0.0017, \ |V_{ub}|^2 \approx 0.000014.$

• CP-violating effects can be very large.

Effective weak Hamiltonian for $b ightarrow q \ell^- ar{ u}_\ell$ decays

$$\mathcal{H}_{eff} = rac{G_F}{\sqrt{2}} V_{qb} \ \bar{q} \gamma^{\mu} (1 - \gamma_5) b \ \bar{\ell} \gamma_{\mu} (1 - \gamma_5)
u$$

+additional Dirac structures beyond the SM

Hadronic matrix elements for $b ightarrow q \ell^- \bar{\nu}_\ell$ decays

Exclusive $H_b \to H_q \ell^- \bar{\nu}_\ell$:

 $\langle H_q(p')|J_\mu|H_b(p)\rangle$

Inclusive $H_b \to X_q \ell^- \bar{\nu}_\ell$:

$$\operatorname{Im}\left[-i\int d^{4}x \ e^{-iq \cdot x} \langle H_{b}(p)| \operatorname{\mathsf{T}} J^{\dagger}_{\mu}(x) J_{\nu}(0) | H_{b}(p) \rangle\right]$$

where $J_{\mu}=ar{q}\gamma_{\mu}(1-\gamma_{5})b$

 $|V_{ub}|$ and $|V_{cb}|$, 2016

[http://www.slac.stanford.edu/xorg/hflav/semi/summer16/html/ExclusiveVub/exclVubVcb.html]

Note: the $\bar{B} \to D^{(*)} \ell \bar{\nu}_{\ell}$ results shown here used extrapolation to zero recoil with the CLN form factor parametrization.

Inclusive *B* decay lepton energy spectra (schematic)

(Not to scale. $\bar{B} \rightarrow X_u \ell \bar{\nu}$ rate is actually even lower.)

Can lattice QCD predict the shapes? [M. Hansen, H. Meyer, D. Robaina, arXiv:1704.08993/PRD 2017]

 $R(D^{(*)}) = \Gamma(B \rightarrow D^{(*)}\tau\bar{\nu})/\Gamma(B \rightarrow D^{(*)}\ell\bar{\nu}), 2017$

[http://www.slac.stanford.edu/xorg/hflav/semi/fpcp17/RDRDs.html]

Note: the SM prediction for $R(D^*)$ used $\bar{B} \to D^{(*)} \ell \bar{\nu}_{\ell}$ experimental data and the CLN form factor parametrization.

Effective weak Hamiltonian for $b \rightarrow s \ell^+ \ell^-$ decays

Effective weak Hamiltonian for $b \rightarrow s \ell^+ \ell^-$ decays

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

with

$$\begin{array}{rcl} O_{1} & = & \bar{c}^{b}\gamma^{\mu}b_{L}^{a} \;\; \bar{s}^{a}\gamma_{\mu}c_{L}^{b}, \\ O_{2} & = \;\; \bar{c}^{a}\gamma^{\mu}b_{L}^{a} \;\; \bar{s}^{b}\gamma_{\mu}c_{L}^{b}, \\ O_{7} & = \;\; \frac{e\;m_{b}}{16\pi^{2}}\;\; \bar{s}\sigma^{\mu\nu}b_{R} \;\; F_{\mu\nu}^{(e.m.)}, \\ O_{9} & = \;\; \frac{e^{2}}{16\pi^{2}}\;\; \bar{s}\gamma^{\mu}b_{L} \;\; \bar{\ell}\gamma_{\mu}\ell, \\ O_{10} & = \;\; \frac{e^{2}}{16\pi^{2}}\;\; \bar{s}\gamma^{\mu}b_{L} \;\; \bar{\ell}\gamma_{\mu}\gamma_{5}\ell, \end{array}$$

In the Standard Model, $\overline{\rm MS}$ scheme, at $\mu=$ 4.2 GeV,

[Computed using EOS, https://eos.github.io/]

Hadronic matrix elements for exclusive $b \rightarrow s \ell^+ \ell^-$ decays

*O*₇, *O*₉, *O*₁₀:

 $\langle H_s(p') | \, \bar{s} \Gamma b \, | H_b(p) \rangle$

*O*_{1,...,6}, *O*₈:

$$\int \mathrm{d}^4x \;\; \mathrm{e}^{iq\cdot x} \left\langle H_s(p') \right| \top \; O_i(0) \; J^{\mu}_{\mathrm{e.m.}}(x) \; |H_b(p)\rangle$$

Hadronic matrix elements for exclusive $b \rightarrow s \ell^+ \ell^-$ decays

 $b \rightarrow s \ell^+ \ell^-$: Fit of C_9^{μ} and C_{10}^{μ} to experimental data (mesons only), 2017

[W. Altmannshofer, P. Stangl, D. M. Straub, arXiv:1704.05435/PRD 2017]

Note: in the lattice QCD calculation of $B \to K^*$ form factors, the K^* was treated as if it were stable.

Belle II and LHCb timeline

[J. Albrecht et al., arXiv:1709.10308]

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 *b* meson decay form factors
- 5 *b* baryon decay form factors
- 6 $\Lambda_b \to \Lambda_c^*$ form factors

Lattice methods for b quarks: overview

Challenge: wide range of scales

 $m_\pi pprox 0.1~{
m GeV}, ~~m_b pprox 5~{
m GeV}$

Approaches:

Special heavy-quark lattice action for the b

- Lattice HQET
- Lattice NRQCD/mNRQCD
- Wilson-like actions with m_Q-dependent, anisotropic coefficients

Same action for b as for light quarks

- Use very fine lattice spacings and/or extrapolate/interpolate in m_b
- Main advantage: renormalization simplified or unnecessary → smaller systematic uncertainty

Large momenta of final-state light mesons are also challenging.

Lattice HQET

Leading-order HQET in rest frame:

$$S_\psi = \delta m \int \mathrm{d}^4 x \ \psi^\dagger \psi + \int \mathrm{d}^4 x \ \psi^\dagger D_0 \ \psi$$

Lattice discretization:

$$S_{\psi, ext{lat.}} = \sum_{x} \psi^{\dagger}(x) ig[(1+\delta m)\psi(x) - U_0^{\dagger}(x-\hat{0})\psi(x-\hat{0})ig]$$

[E. Eichten, B. Hill, PLB 240, 193 (1990)]

Higher-order 1/m corrections, starting with

$$\mathcal{L}_{\psi}^{(1)} = \psi^{\dagger} \left[-rac{\mathbf{D}^2}{2m} - g rac{oldsymbol{\sigma}\cdot\mathbf{B}}{2m}
ight] \psi,$$

are treated as insertions in correlation functions, with nonperturbative renormalization. This means that the theory remains renormalizable, and one can go to the continuum limit.

[J. Heitger, R. Sommer, arXiv:hep-lat/0310035/JHEP 2004]

Lattice HQET can only be used for singly-heavy hadrons.

Lattice NRQCD

Continuum action (with tree-level matching coefficients):

$$S_{\psi} = \int d^{4}x \ \psi^{\dagger} \left[\underbrace{D_{0} - \frac{\mathbf{D}^{2}}{2m}}_{\mathcal{O}(v^{2})} - \underbrace{\frac{g}{2m} \boldsymbol{\sigma} \cdot \mathbf{B} + \frac{g}{8m^{2}} \left(i \mathbf{D}^{ad} \cdot \mathbf{E} - \boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D}) \right) - \frac{\mathbf{D}^{4}}{8m^{3}} + \dots \right] \psi}_{\mathcal{O}(v^{4})}$$

Here, the power counting indicated is based on v^2 , the average heavy-quark velocity-squared inside heavy quarkonium. For bottomonium, $v^2 \approx 0.1$.

Lattice NRQCD is a discretization of this, where all terms are kept in the action [G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, K. Hornbostel, arXiv:hep-lat/9205007/PRD1992]. One must keep $am \gtrsim 1$ in the simulations.

Matching coefficients for the action and for currents have been computed using one-loop lattice perturbation theory.

[See for example C. Monahan, J. Shigemitsu, R. Horgan, arXiv:1211.6966/PRD 2013;

R. Dowdall, C. Davies, T. Hammant, R. Horgan, C. Hughes, arXiv:1309.5797/PRD 2014]

Lattice "moving NRQCD"

This is a Lorentz-boosted version of lattice NRQCD. The **v** below is the boost velocity, not the power-counting parameter discussed before. The continuum action of mNRQCD (with tree-level matching coefficients) is

$$\begin{split} S &= \int d^4 x \ \psi_{\nu}^{\dagger} \left[D_0 - i \mathbf{v} \cdot \mathbf{D} - \frac{\mathbf{D}^2 - (\mathbf{v} \cdot \mathbf{D})^2}{2\gamma m} - \frac{g}{2\gamma m} \boldsymbol{\sigma} \cdot \mathbf{B}' \right. \\ &- \frac{i}{4\gamma^2 m^2} \left(\left\{ \mathbf{v} \cdot \mathbf{D}, \ \mathbf{D}^2 \right\} - 2(\mathbf{v} \cdot \mathbf{D})^3 \right) + \frac{g}{8m^2} \left(i \mathbf{D}^{\mathrm{ad}} \cdot \mathbf{E} + \mathbf{v} \cdot (\mathbf{D}^{\mathrm{ad}} \times \mathbf{B}) \right) \\ &- \frac{g}{8\gamma m^2} \ \boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E}' - \mathbf{E}' \times \mathbf{D}) + \frac{g}{8(\gamma + 1)m^2} \left\{ \mathbf{v} \cdot \mathbf{D}, \ \boldsymbol{\sigma} \cdot (\mathbf{v} \times \mathbf{E}') \right\} \\ &- \frac{(2 - \mathbf{v}^2)g}{16m^2} \left(D_0^{\mathrm{ad}} + i \mathbf{v} \cdot \mathbf{D}^{\mathrm{ad}} \right) (\mathbf{v} \cdot \mathbf{E}) - \frac{ig}{4\gamma^2 m^2} \left\{ \mathbf{v} \cdot \mathbf{D}, \ \boldsymbol{\sigma} \cdot \mathbf{B}' \right\} \\ &- \frac{1}{8\gamma^3 m^3} \left(\mathbf{D}^4 - 3 \left\{ \mathbf{D}^2, \ (\mathbf{v} \cdot \mathbf{D})^2 \right\} + 5(\mathbf{v} \cdot \mathbf{D})^4 \right) + \dots \right] \psi_{\nu}. \end{split}$$

Lattice mNRQCD allows to give high momentum $(> a^{-1})$ to *b*-hadrons on the lattice while keeping discretization errors under control.

[R. R. Horgan, L. Khomskii, S. Meinel, M. Wingate, K. M. Foley, G. P. Lepage, G. M. von Hippel, A. Hart, E. H. Mller, C. T. H. Davies, A. Dougall, K. Y. Wong, arXiv:0906.0945/PRD 2009]

Wilson-like actions with m_Q -dependent, anisotropic coefficients

Wilson-like actions have a smooth heavy-quark limit. Cutoff effects can be understood and (partially) removed using HQET/NRQCD analysis.

[A. El-Khadra, A. Kronfeld, P. Mackenzie, arXiv:hep-lat/9604004/PRD 1997;

A. Kronfeld, arXiv:hep-lat/0002008/PRD 2000;

J. Harada, S. Hashimoto, K.-I. Ishikawa, A. Kronfeld, T. Onogi, N. Yamada, arXiv:hep-lat/0112044/PRD 2002;

J. Harada, S. Hashimoto, A. Kronfeld, T. Onogi, arXiv:hep-lat/0112045/PRD 2002]

- Fermilab approach: am tuned to yield correct heavy-light meson kinetic mass (the energy at zero momentum is irrelevant).
- Columbia approach: (also known as RHQ action): am, ν, and c_P tuned to yield correct heavy-light meson kinetic mass, rest mass, and hyperfine splitting [N. Christ, M. Li, H.-W. Lin, arXiv:hep-lat/0608006/PRD 2007]
- Oktay-Kronfeld action: adds dimension-6 and dimension-7 operators [M. Oktay, A. Kronfeld, arXiv:0803.0523/PRD 2008]
- Matching of currents is usually done with the "mostly nonperturbative method": $J_{\Gamma} = \underbrace{\sqrt{Z_{V}^{(qq)} Z_{V}^{(bb)}}}_{D_{\Gamma}} \rho_{\Gamma} \Big[\bar{q} \Gamma b + \mathcal{O}(a) \text{ improvement terms} \Big]$

nonperturbative

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 *b* meson decay form factors
- 5 *b* baryon decay form factors
- 6 $\Lambda_b \to \Lambda_c^*$ form factors

The z expansion

To fit the $q^2 [= (p - p')^2]$ dependence of form factors in a model-independent way, it is convenient to consider them as functions of a new dimensionless variable z, defined as

$$z=rac{\sqrt{t_{ ext{cut}}-q^2}-\sqrt{t_{ ext{cut}}-t_0}}{\sqrt{t_{ ext{cut}}-q^2}+\sqrt{t_{ ext{cut}}-t_0}}$$

This maps the complex q^2 plane, cut along the real axis for $q^2 > t_{cut}$, to the interior of the unit disk:

The BCL "simplified" z expansion for a form factor with a single pole below t_{cut} reads

$$f(q^2) = rac{1}{1-q^2/m_{
m pole}^2} \sum_{k=0}^\infty a_k \, z^k$$

[C. Bourrely, I. Caprini, L. Lellouch, arXiv:0807.2722/PRD 2009]

The z expansion

$$f(q^2) = rac{1}{1-q^2/m_{
m pole}^2} \sum_{k=0}^\infty a_k \, z^k$$

Analyticity guarantees convergence. Unitarity provides bounds on the sizes of the coefficients a_k . It is sufficient to keep only the first few terms of the series.

The unitarity bounds take a simple form in the original BGL variant of the z expansion, which however requires a complicated "outer function".

[C. Boyd, B. Grinstein, R. Lebed, arXiv:hep-ph/9412324/PRL1995]

The z expansion

Example: the form factor $f_+(\Lambda_b \rightarrow p)$

• $t_{\rm cut}$ is set to the onset location of the two-particle branch cut created by the current $J^{\mu} = \bar{u}\gamma^{\mu}b$,

$$t_{
m cut} = (m_B + m_\pi)^2$$

• m_{pole} is set to the mass of the $J^P = 1^-$ bound state created by the current $J^\mu = \bar{u}\gamma^\mu b$,

$$m_{\text{pole}} = m_{B^*}$$

• t_0 determines which value of q^2 gets mapped to z = 0. I used

$$t_0 = q_{\max}^2 = (m_{\Lambda_b} - m_p)^2$$

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 b meson decay form factors
- 5 *b* baryon decay form factors

6
$$\Lambda_b \to \Lambda_c^*$$
 form factors

News on $|V_{cb}|$

The 2016 HFLAV exclusive determinations of $|V_{cb}|$ used extrapolations of the experimental data for the $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ differential decay rates to zero recoil with the one-parameter CLN form factor parametrizations [I. Caprini, L. Lellouch, M. Neubert, arXiv:hep-ph/9712417/NPB1998], where the shapes are fixed by HQET and dispersive bounds.

Using the less constrained BGL z expansion [C. Boyd, B. Grinstein, R. Lebed,

arXiv:hep-ph/9412324/PRL1995] (and new Belle data for the angular distribution of $\bar{B} \rightarrow D^* \ell \bar{\nu}$ [arXiv:1702.01521]) gives larger values for $|V_{cb}|$ that are closer to the inclusive value.

[J. Harrison, C. Davies, M. Wingate, arXiv:1711.11013/PRD 2018]

In the remainder of this section, I will only discuss heavy-to-light meson form factors (for lack of time).

$B \to \pi$ form factors

Reference	LQ action	HQ action	m_{π} [MeV]	<i>a</i> [fm]	Notes
RBC/UKQCD arXiv:1501.05373/PRD	DWF	RHQ	290 - 420	0.08, 0.11	
FNAL/MILC arXiv:1503.07839/PRD arXiv:1507.01618/PRL	AsqTad	Fermilab	175 - 420	0.045, 0.06, 0.09, 0.12	$B o \pi \ell^+ \ell^-$
FNAL/MILC arXiv:1710.09442(proc.)	HISQ	Fermilab	135 - 300	0.09, 0.12, 0.15	
HPQCD arXiv:1510.07446/PRD	HISQ	NRQCD	135 - 300	0.09, 0.12, 0.15	zero recoil
HPQCD C. Bouchard, Beauty 2018	HISQ/AsqTad	NRQCD	280 - 520	0.09, 0.12	entire q^2 range
JLQCD arXiv:1710.07094(proc.)	DWF	DWF	300 - 500	0.044, 0.055, 0.08	

$B_s \rightarrow K$ form factors

LHCb will measure a ratio of $B_s \rightarrow K \ell \bar{\nu}$ and $B_s \rightarrow D_s \ell \bar{\nu}$ decay rates, which will allow a new determination of $|V_{ub}/V_{cb}|$ [M. Calvi, Talk at Challenges in semileptonic B decays workshop, MITP, 2018].

Reference	LQ action	HQ action	m_{π} [MeV]	<i>a</i> [fm]	Notes
HPQCD	AcaTad	NROCD	175 200	0.00 0.12	
arXiv:1406.2279/PRD	Asqiau	NINQCD	175 - 500	0.09, 0.12	
RBC/UKQCD arXiv:1501.05373/PRD	DWF	RHQ	290 - 420	0.08, 0.11	
ALPHA					
arXiv:1601.04277/PLB	Clover	HQET	175 - 420	0.05, 0.065, 0.075	leading order
arXiv:1711.01158(proc.)					order 1/m
FNAL/MILC arXiv:1711.08085(proc.)	AsqTad	Fermilab	175 - 420	0.06, 0.09, 0.12	
FNAL/MILC arXiv:1710.09442(proc.)	HISQ	Fermilab	135 - 300	0.09, 0.12, 0.15	

$B \to K$ form factors

Reference	LQ action	HQ action	m_{π} [MeV]	a [fm]
HPQCD arXiv:1306.2384/PRD	AsqTad	NRQCD	270 - 400	0.09, 0.12
FNAL/MILC arXiv:1509.06235/PRD	AsqTad	Fermilab	175 - 420	0.045, 0.06, 0.09, 0.12
FNAL/MILC arXiv:1710.09442(proc.)	HISQ	Fermilab	135 - 300	0.09, 0.12, 0.15

$B^+ \rightarrow K^+ \mu^+ \mu^-$ differential branching fraction

Contributions from $O_{1...6;8}$ treated with OPE and QCDF.

[D. Du et al. (FNAL/MILC), arXiv:1510.02349/PRD 2016]

$B ightarrow K^*$ and $B_s ightarrow K^*$ form factors

Reference	LQ action	HQ action	m_{π} [MeV]	a [fm]	Notes
Cambridge group arXiv:1310.3722/PRD	AsqTad	NRQCD	310 - 520	0.09, 0.12	K^* treated as stable

Note: earlier, quenched calculations by other groups (see references in arXiv:1310.3722).

Seven form factors; only one example shown below.

$B_s \rightarrow \phi$ form factors

Reference	LQ action	HQ action	m_{π} [MeV]	a [fm]	Notes
Cambridge group arXiv:1310.3722/PRD	AsqTad	NRQCD	310 - 520	0.09, 0.12	ϕ treated as stable
RBC/UKQCD arXiv:1612.05112(proc.)	DWF	RHQ	290 - 420	0.08, 0.11	ϕ treated as stable

Seven form factors; only one example shown below.

 $B \to K^* \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$ differential branching fractions at high q^2

Contributions from $O_{1...6;8}$ treated with OPE.

[R. R. Horgan, Z. Liu, S. Meinel, M. Wingate, arXiv:1310.3887/PRL 2014]

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 *b* meson decay form factors
- 5 *b* baryon decay form factors
- 6 $\Lambda_b \to \Lambda_c^*$ form factors

b (and c) baryon decay form factors: overview

Early work on $\Lambda_b \rightarrow \Lambda_c$ (quenched, focused on Isgur-Wise function):

K. C. Boweler et al. (UKQCD Collaboration), arXiv:hep-lat/9709028/PRD 1998

S. Gottlieb and S. Tamhankar, arXiv:hep-lat/0301022/Lattice 2002

Our work, using RBC/UKQCD 2 + 1 flavor DWF ensembles:

Transition	mb	<i>a</i> [fm]	m_{π} [MeV]	Reference
$\Lambda_b \to \Lambda$	∞	0.11, 0.08	230-360	WD, DL, SM, MW, arXiv:1212.4827/PRD 2013
$\Lambda_b ightarrow p$	∞	0.11, 0.08	230-360	WD, DL, SM, MW, arXiv:1306.0446/PRD 2013
$\Lambda_b ightarrow p$	phys.	0.11, 0.08	230-360	WD, CL, SM, arXiv:1503.01421/PRD 2015
$\Lambda_b \rightarrow \Lambda_c$	phys.	0.11, 0.08	230-360	WD, CL, SM, arXiv:1503.01421/PRD 2015; AD, SK, SM, AR, arXiv:1702.02243/JHEP 2017
$\Lambda_b \rightarrow \Lambda$	phys.	0.11, 0.08	230-360	WD, SM, arXiv:1602.01399/PRD 2016
$\Lambda_b \to \Lambda^*$	phys.	0.11	340	SM, GR, arXiv:1608.08110/Lattice2016
$\Lambda_b ightarrow \Lambda_c^*$	phys.	0.11, 0.08	300-430	SM, GR, Later in this talk
$\Lambda_c \rightarrow \Lambda$		0.11, 0.08	140 –360	SM, arXiv:1611.09696/PRL2017
$\Lambda_c ightarrow p$		0.11, 0.08	230-360	SM, arXiv:1712.05783/PRD 2018

 $m_b = \infty$ using Eichten-Hill action with HYP smearing. Current matching with 1-loop PT.

 m_b = phys. using RHQ action. Current matching with mostly NPR (perturbative coefficients to 1 loop).

WD = William Detmold

DL = C.-J. David Lin

SM = Stefan Meinel

MW = Matthew Wingate

- CL = Christoph Lehner
- AD = Alakabha Datta
- $\mathsf{SK}=\mathsf{Saeed}\;\mathsf{Kamali}$
- AR = Ahmed Rashed

GR = Gumaro Rendon (graduate student at U of A)

$\Lambda_b \rightarrow p$ form factors

Here $a=0.112$ fm, $m_{\pi}=336$ MeV	H $a=0.085$ fm, $m_{\pi}=352$ MeV	$a = 0, \ m_{\pi} = 135 \text{ MeV}$
Here $a=0.112$ fm, $m_{\pi}=270$ MeV	$\mathbf{H} = 0.085 \mathrm{fm}, \ m_\pi = 295 \mathrm{MeV}$	
Here $a=0.112$ fm, $m_{\pi}=245$ MeV	$H_{1}^{\pm} a = 0.085 { m fm}, \ m_{\pi} = 227 { m MeV}$	

$\Lambda_b \rightarrow p$ form factors

$\Lambda_b ightarrow p \, \mu^- ar{ u}_\mu$ differential decay rate

$$\frac{{\rm d}\Gamma/{\rm d}q^2}{|V_{ub}|^2} \,\, ({\rm ps}^{-1}\,{\rm GeV}^{-2})$$

$\Lambda_b \rightarrow \Lambda_c$ form factors

$\mathbf{H}_{\mathbf{H}} = 0.112 \text{ fm}, \ m_{\pi} = 336 \text{ MeV}$	$H_{\pi} = 0.085 { m fm}, \ m_{\pi} = 352 { m MeV}$	$a = 0, m_{\pi} = 135 \text{ MeV}$
$rac{1}{4}$ $a=0.112$ fm, $m_{\pi}=270$ MeV	$\mathbf{H} = 0.085 \mathrm{fm}, \ m_\pi = 295 \mathrm{MeV}$	
$ ightarrow$ $a=0.112$ fm, $m_{\pi}=245$ MeV	$\mathbf{H}_{\mathbf{T}}^{\mathbf{T}}$ $a=0.085~\mathrm{fm},~m_{\pi}=227~\mathrm{MeV}$	

$\Lambda_b \rightarrow \Lambda_c$ form factors

$$R(\Lambda_c) = \frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_{\tau})}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_{\mu})} = 0.3328 \ \pm \ 0.0074_{\rm stat} \ \pm \ 0.0070_{\rm syst}$$

Ratio of $\Lambda_b \to p \, \mu^- \bar{\nu}_\mu$ and $\Lambda_b \to \Lambda_c \, \mu^- \bar{\nu}_\mu$ decay rates

Lattice QCD:

$$\frac{\frac{1}{|V_{ub}|^2} \int_{15 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to p \ \mu^- \overline{\nu}_\mu)}{dq^2} dq^2}{\frac{1}{|V_{cb}|^2} \int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \overline{\nu}_\mu)}{dq^2} dq^2} = 1.471 \pm 0.095_{\text{ stat.}} \pm 0.109_{\text{ syst}}$$

Experiment:

$$\frac{\int_{15 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to p \ \mu^- \overline{\nu}_\mu)}{dq^2} dq^2}{\int_{7 \text{ GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \overline{\nu}_\mu)}{dq^2} dq^2} = (1.00 \pm 0.04 \pm 0.08) \times 10^{-2}$$

[LHCb Collaboration, arXiv:1504.01568/Nature Physics 2015]

Combine lattice QCD and experiment:

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004_{\text{expt}} \pm 0.004_{\text{lat}}$$

Shape of the $\Lambda_b \rightarrow \Lambda_c \mu^- \bar{\nu}_\mu$ decay rate from LHCb

Gray rectangles (triangles = central values): Lattice QCD prediction Black circles: LHCb

[LHCb Collaboration, arXiv:1709.01920/PRD 2017]

$\Lambda_b \rightarrow \Lambda_c$ tensor form factors (for BSM studies)

$\Lambda_b \rightarrow \Lambda$ vector and axial vector form factors

$\Lambda_b \rightarrow \Lambda$ tensor form factors

$\Lambda_b \to \Lambda \mu^+ \mu^-$ differential branching fraction at high q^2

Contributions from $O_{1...6;8}$ treated with OPE.

Deviation in opposite direction compared to mesonic decays?

1 Introduction

- 2 Lattice methods for *b* quarks
- 3 The *z* expansion
- 4 *b* meson decay form factors
- 5 *b* baryon decay form factors
- 6 $\Lambda_b \to \Lambda_c^*$ form factors

[S. Meinel and G. Rendon, work in progress]

Motivation

[G. Cohan, Talk at 2017 LHCb Implications Workshop]

The Λ_c^* baryons

Name	J^P	Mass [MeV]	Width [MeV]	Strong decay modes
$\Lambda_{c}^{*}(2595)$	$\frac{1}{2}^{-}$	2592.25(28)	2.6(6)	$\Lambda_c \pi^+ \pi^-$
$\Lambda_{c}^{*}(2625)$	$\frac{3}{2}$ -	2628.11(19)	< 0.97	$\Lambda_c \pi^+ \pi^-$

(decays proceed partly through Λ_c^* ightarrow $\Sigma_c^{(*)}(
ightarrow \Lambda_c \pi)\pi)$

[2017 Review of Particle Physics]

In the following, we will treat the Λ_c^* baryons as if they were stable.

Some notation to define the form factors

$$\langle \Lambda_{c\frac{1}{2}^{-}}^{*}(\mathbf{p}',s') | \, \bar{c} \, \Gamma \, b \, | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}(m_{\Lambda_{c\frac{1}{2}^{-}}},\mathbf{p}',s') \, \gamma_{5} \, \mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma] \, u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\langle \Lambda_{c\frac{3}{2}^{-}}^{*}(\mathbf{p}',s') | \, \bar{c} \, \Gamma \, b \, | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}_{\lambda}(m_{\Lambda_{c\frac{3}{2}^{-}}},\mathbf{p}',s') \, \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma] \, u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\sum_{s} u(m,\mathbf{p},s)\overline{u}(m,\mathbf{p},s) = m + \phi$$

$$\sum_{s'} u_{\mu}(m', \mathbf{p}', s') \bar{u}_{\nu}(m', \mathbf{p}', s') = -(m' + p') \left(g_{\mu\nu} - \frac{1}{3} \gamma_{\mu} \gamma_{\nu} - \frac{2}{3m'^2} p'_{\mu} p'_{\nu} - \frac{1}{3m'} (\gamma_{\mu} p'_{\nu} - \gamma_{\nu} p'_{\mu}) \right)$$

$\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$ vector and axial vector form factors

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[\gamma^{\mu}] &= f_{0}^{\left(\frac{1}{2}^{-}\right)}\left(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}\right)\frac{q^{\mu}}{q^{2}} \\ &+ f_{+}^{\left(\frac{1}{2}^{-}\right)}\frac{m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}}{s_{-}}\left(p^{\mu} + p'^{\mu} - \left(m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}\right)\frac{q^{\mu}}{q^{2}}\right) \\ &+ f_{\perp}^{\left(\frac{1}{2}^{-}\right)}\left(\gamma^{\mu} + \frac{2m_{\Lambda_{c}^{*}}}{s_{-}}p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}}p'^{\mu}\right), \end{aligned}$$

$$\begin{aligned} \mathcal{G}^{\left(\frac{1}{2}^{-}\right)}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}\right)\frac{q^{\mu}}{q^{2}} \\ &-g_{+}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{s_{+}}\left(\rho^{\mu}+\rho'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-g_{\perp}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c}^{*}}}{s_{+}}\rho^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}\rho'^{\mu}\right),\end{aligned}$$

$$s_{\pm} = (m_{\Lambda_b} \pm m_{\Lambda_c^*})^2 - q^2$$

$$rac{1}{2}^+
ightarrow rac{1}{2}^-$$
 tensor form factors

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[i\sigma^{\mu\nu}q_{\nu}] &= -h_{+}^{\left(\frac{1}{2}^{-}\right)}\frac{q^{2}}{s_{-}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-h_{\perp}^{\left(\frac{1}{2}^{-}\right)}\left(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}\right)\left(\gamma^{\mu}+\frac{2\,m_{\Lambda_{c}^{*}}}{s_{-}}\,p^{\mu}-\frac{2\,m_{\Lambda_{b}}}{s_{-}}\,p'^{\mu}\right) \end{aligned}$$

$$\begin{aligned} \mathscr{G}^{\left(\frac{1}{2}^{-}\right)}[i\sigma^{\mu\nu}\gamma_{5}q_{\nu}] &= -\widetilde{h}_{+}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\frac{q^{2}}{s_{+}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-\widetilde{h}_{\perp}^{\left(\frac{1}{2}^{-}\right)}\gamma_{5}\left(m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}\right)\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c}^{*}}}{s_{+}}p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}p'^{\mu}\right) \end{aligned}$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^-$ vector and axial vector form factors

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}] &= f_{0}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}) p^{\lambda} q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}) p^{\lambda} (q^{2} (p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}) q^{\mu})}{q^{2} s_{+}} \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} \right) \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} + \frac{s_{-} g^{\lambda \mu}}{m_{\Lambda_{c}^{*}}} \right) \end{aligned}$$

$$\begin{aligned} \mathcal{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}})p^{\lambda}q^{\mu}}{q^{2}} \\ &-g_{+}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}})p^{\lambda}(q^{2}(p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{q^{2}s_{-}} \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} - \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}\right) \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} + \frac{2p^{\lambda}p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}} - \frac{s_{+}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}} \right) \end{aligned}$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^-$ tensor form factors

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}] &= -h_{+}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{m_{\Lambda_{b}}s_{+}} \\ &-h_{\perp}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}\right) \\ &-h_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{-}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c}^{*}}}+\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}+\frac{s_{-}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right)\end{aligned}$$

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}\gamma_{5}] &= -\widetilde{h}_{+}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{m_{\Lambda_{b}}s_{-}} \\ &-\widetilde{h}_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}\right) \\ &-\widetilde{h}_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}{s_{+}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}}{m_{\Lambda_{b}}}\left(p^{\lambda}\gamma^{\mu}+\frac{2p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c}^{*}}}+\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}-\frac{s_{+}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right) \end{aligned}$$

Λ_c^* interpolating fields

We work in the Λ_c^* rest frame to allow exact spin-parity projection. We use

$$\begin{aligned} (\Lambda_c^*)_{j\gamma} &= \epsilon^{abc} \, (C\gamma_5)_{\alpha\beta} \left[\tilde{c}^a_{\alpha} \, \tilde{d}^b_{\beta} \, (\nabla_j \tilde{u})^c_{\gamma} - \tilde{c}^a_{\alpha} \, \tilde{u}^b_{\beta} \, (\nabla_j \tilde{d})^c_{\gamma} \right. \\ &+ \tilde{u}^a_{\alpha} \, (\nabla_j \tilde{d})^b_{\beta} \, \tilde{c}^c_{\gamma} - \tilde{d}^a_{\alpha} \, (\nabla_j \tilde{u})^b_{\beta} \, \tilde{c}^c_{\gamma} \end{aligned}$$

(~ denotes Gaussian smearing) [S. Meinel and G. Rendon, arXiv:1608.08110/Lattice2016]

This requires light-quark propagators with derivative sources.

We project to $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ using
$$\begin{split} P_{jk}^{(\frac{1}{2}^-)} &= \frac{1}{3}\gamma_j\gamma_k\frac{1+\gamma_0}{2}, \\ P_{jk}^{(\frac{3}{2}^-)} &= \left(g_{jk} - \frac{1}{3}\gamma_j\gamma_k\right)\frac{1+\gamma_0}{2}. \end{split}$$

Lattice methods

• Gauge field configurations generated by the RBC and UKQCD collaborations

```
[Y. Aoki et al., arXiv:1011.0892/PRD 2011]
```

- u, d, s quarks: domain-wall action
 [D. Kaplan, arXiv:hep-lat/9206013/PLB 1992; V. Furman and Y. Shamir, arXiv:hep-lat/9303005/NPB 1995]
- All-mode averaging with 1 exact and 32 sloppy propagators per configuration

```
[E. Shintani et al., arXiv:1402.0244/PRD 2015]
```

- c, b quarks: anisotropic clover with three parameters, re-tuned more accurately to $D_s^{(*)}$ and $B_s^{(*)}$ dispersion relation and HFS
- "Mostly nonperturbative" renormalization
 [A. El-Khadra et al., hep-ph/0101023/PRD 2001]
- Three-point functions with 9 source-sink separations

Lattice parameters

Name	$N_s^3 \times N_t$	β	am _{u,d}	am _s	<i>a</i> (fm)	m_π (MeV)	Run status
C01	$24^{3} \times 64$	2.13	0.01	0.04	pprox 0.111	pprox 430	1/4 cfgs done
C005	$24^3 imes 64$	2.13	0.005	0.04	pprox 0.111	pprox 340	1/4 cfgs done
F004	$32^3 imes 64$	2.25	0.004	0.03	pprox 0.083	pprox 300	1/4 cfgs done

 Λ_c^* two-point functions

preliminary

Results from 24³ \times 64, $am_{u,d}=0.005$ ensemble, 78 configs \times 32 sources $a^{-1}=1.785(5)$ GeV

Extracting the form factors from ratios of 3pt and 2pt functions

t = source-sink separation t' = current insertion time

We have data for two different Λ_b momenta: $\mathbf{p} = (0,0,2)\frac{2\pi}{L} \approx 0.9 \text{ GeV}$ and $\mathbf{p} = (0,0,3)\frac{2\pi}{L} \approx 1.4 \text{ GeV}$

Extracting the form factors from ratios of 3pt and 2pt functions

Schematically,

 $R_f(\mathbf{p}, t) = \sqrt{(\text{kinematic factors}) \times (\text{polarization vectors}) \times (\text{ratio at } t' = t/2)}$ $\rightarrow f(\mathbf{p}) \text{ for large } t$ Example: $R_{f_{\perp}}$ for $\Lambda_b \to \Lambda_c^* \left(\frac{3}{2}\right)$ preliminary

Results from $24^3 \times 64$, $am_{u,d} = 0.005$ ensemble, 78 configs \times 32 sources

 $\mathbf{p} = (0, 0, 2) \frac{2\pi}{L}$

$$\Lambda_b
ightarrow \Lambda_c^* \left(rac{1}{2}^-
ight)$$
 vector form factors

very preliminary

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

$\Lambda_b \to \Lambda_c^* \left(\frac{3}{2}^- \right)$ vector form factors

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

very preliminary

Only the statistical uncertainties are shown.

To predict $R(\Lambda_c^*)$, we will combine the lattice QCD form factors (which are limited to low recoil) with experimental data for the shapes of the $\Lambda_b \to \Lambda_c^* \mu \bar{\nu}$ differential decay rates, making use of HQET.

[P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo, and D. Van Dyk, arXiv:1801.08367]