

Multi-hadron observables from lattice QCD

Maxwell T. Hansen

May 25th, 2018

Outline

n-particle inclusive rates

Potential applications...

Studying three-particle resonances

$$\omega(782), a_1(1420) \to \pi\pi\pi$$

$$N(1440) \rightarrow N\pi, N\pi\pi$$

Calculating weak decays, form factors and transitions $K \to \pi \pi \pi \qquad N \gamma^* \to N \pi \pi$

Determining three-body interactions

NNN three-body forces needed as EFT input for studying larger nuclei and nuclear matter

Other motivations...

The Lüscher and Lellouch-Lüscher formalism only applies for $\sqrt{s}=E_{\rm cm}<$ multi-particle threshold

Other motivations...

The Lüscher and Lellouch-Lüscher formalism only applies for $\sqrt{s} = E_{\rm cm} <$ multi-particle threshold

 $\begin{array}{ll} \pi K \rightarrow \pi K & \sqrt{s} = 2m_{\pi} + m_{K} \\ \pi \pi \rightarrow \pi \pi & \text{only up to} & \sqrt{s} = 4m_{\pi} \\ N\pi \rightarrow N\pi & \sqrt{s} = 2m_{\pi} + m_{N} \end{array}$

Other motivations...

The Lüscher and Lellouch-Lüscher formalism only applies for $\sqrt{s} = E_{\rm cm} <$ multi-particle threshold

 $\begin{array}{ll} \pi K \rightarrow \pi K & \sqrt{s} = 2m_{\pi} + m_{K} \\ \pi \pi \rightarrow \pi \pi & \text{only up to} & \sqrt{s} = 4m_{\pi} \\ N\pi \rightarrow N\pi & \sqrt{s} = 2m_{\pi} + m_{N} \end{array}$

3-particle formalism is a step on the way to n-particle formalism

We focus here on identical scalar particles

For now we turn off two-to-three scattering using a symmetry

We focus here on identical scalar particles

 $i\mathcal{M}_{3\to 3}\equiv$

For now we turn off two-to-three scattering using a symmetry

Three-to-three amplitude has kinematic singularities

fully connected correlator with

six external legs amputated and projected on shell

How can we extract a singular, eight-coordinate function using finite-volume energies?

Spectrum depends on a modified quantity with singularities removed

PV pole prescriptiondf stands for "divergence free"Same degrees of freedom as \mathcal{M}_3 Smooth, real function (easier to extract)Relation to \mathcal{M}_3 is known (depends only on on-shell \mathcal{M}_2)

How can we extract a singular, eight-coordinate function using finite-volume energies?

Spectrum depends on a modified quantity with singularities removed

PV pole prescription df stands for "divergence free" Same degrees of freedom as \mathcal{M}_3 Smooth, real function (easier to extract) Relation to \mathcal{M}_3 is known (depends only on on-shell \mathcal{M}_2)

Degrees of freedom encoded in an extended matrix space

Finite-volume correlators

Finite-volume correlators

 $rac{2}{3}$ Two and three particles $\begin{tabular}{c} \hline m \end{tabular} = \end{tabular} m < E^* < 4m$

Of poles and branch cuts

$$C_L(P) \equiv \int_L d^4x \ e^{-iPx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$$

At fixed L, \mathbf{P} poles in C_L give the finite-volume spectrum

Of poles and branch cuts

$$C_L(P) \equiv \int_L d^4x \ e^{-iPx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$$

At fixed L, \mathbf{P} poles in C_L give the finite-volume spectrum

Want to relate $C_L \longleftrightarrow C_{\infty}$ ($\mathcal{M}_{n \to m}$ is just a specific choice of C_{∞}) The idea is to "reach in" and correct the singularity structure

From poles to cuts: Toy example

From poles to cuts: Toy example

From poles to cuts: Toy example

New skeleton expansion

 $C_L(E,\vec{P}) \stackrel{?}{=} 0$

Recall for two particles we started with a "skeleton expansion"

So now we need the same for three...

 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

New skeleton expansion

Recall for two particles we started with a "skeleton expansion"

So now we need the same for three... $C_L(E, \vec{P}) \stackrel{\text{constrained}}{=} \underbrace{C_L(E, \vec{P})}_{\text{constrained}} + \underbrace{C_L(E, \vec{P$

No!... We must also accommodate diagrams like

Back to three: new skeleton expansion

Kernel definitions:

New skeleton expansion

New skeleton expansion

- All lines are fully dressed propagators
 Boxes represent sums over finitevolume momenta
 Kornols may contain fixed poles
- Kernels may contain fixed poles

Basic approach

1. Work out the three particle skeleton expansion

2. Break diagrams into finite- and infinite-volume parts

3. Organize and sum terms to identify infinite-volume observables

Basic approach

1. Work out the three particle skeleton expansion

2. Break diagrams into finite- and infinite-volume parts

3. Organize and sum terms to identify infinite-volume observables

Result

$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) - A'F_3 \frac{1}{1 + \mathcal{K}_{df,3}F_3} A$$

- Looks similar to the two-particle case
- All quantities defined with PV-pole prescription
- F_3 depends on finite-volume and two-to-two scattering

Quantization condition

At fixed (L, \vec{P}) , finite-volume energies are solutions to $\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0$

 $F_3 \equiv$ matrix that depends on geometric functions and $\mathcal{M}_{2 \rightarrow 2}$.

MTH and Sharpe (2014)

Quantization condition

At fixed (L, \vec{P}) , finite-volume energies are solutions to $\det_{k,\ell,m} \left[\mathcal{K}_{df,3}^{-1} + F_3 \right] = 0$

 $F_3 \equiv$ matrix that depends on geometric functions and $\mathcal{M}_{2 \rightarrow 2}$.

MTH and Sharpe (2014)

Determining $\mathcal{K}_{df,3}$

At fixed (L, \vec{P}) , finite-volume energies are solutions to $\det_{k,\ell,m} \left[\mathcal{K}_{df,3}^{-1} + F_3 \right] = 0$

 $F_3 \equiv$ matrix that depends on geometric functions and $\mathcal{M}_{2 \rightarrow 2}$. MTH and Sharpe (2014)

(1). Use two-particle q.c. to constrain \mathcal{M}_2 and determine $F_3(E, \vec{P}, L)$. $det[\mathcal{M}_2^{-1} + F_2] = 0 \longrightarrow \mathcal{M}_2 \longrightarrow F_3(E, \vec{P}, L)$

Determining $\mathcal{K}_{df,3}$

At fixed (L, \vec{P}) , finite-volume energies are solutions to $\det_{k,\ell,m} \left[\mathcal{K}_{df,3}^{-1} + F_3 \right] = 0$

 $F_3 \equiv$ matrix that depends on geometric functions and $\mathcal{M}_{2 \rightarrow 2}$. MTH and Sharpe (2014)

(1). Use two-particle q.c. to constrain \mathcal{M}_2 and determine $F_3(E, \vec{P}, L)$. $det[\mathcal{M}_2^{-1} + F_2] = 0 \longrightarrow \mathcal{M}_2 \longrightarrow F_3(E, \vec{P}, L)$

(2). Use decomposition + parametrization to express $\mathcal{K}_{df,3}(E^*)$ in terms of α_i . $\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3) \approx \mathcal{K}_{df,3}[\alpha_1, \cdots, \alpha_N]$ Recall, this is a real, smooth function

Determining $\mathcal{K}_{df,3}$

At fixed (L, \vec{P}) , finite-volume energies are solutions to $\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0$

 $F_3 \equiv$ matrix that depends on geometric functions and $\mathcal{M}_{2 \rightarrow 2}$. MTH and Sharpe (2014)

(1). Use two-particle q.c. to constrain \mathcal{M}_2 and determine $F_3(E, \vec{P}, L)$. $det[\mathcal{M}_2^{-1} + F_2] = 0 \longrightarrow \mathcal{M}_2 \longrightarrow F_3(E, \vec{P}, L)$

(2). Use decomposition + parametrization to express $\mathcal{K}_{df,3}(E^*)$ in terms of α_i . $\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3) \approx \mathcal{K}_{df,3}[\alpha_1, \cdots, \alpha_N]$ Recall, this is a real, smooth function

(3). Use three-particle q.c. with finite-volume energies to determine $\mathcal{K}_{df,3}(E^*)$. $det[\mathcal{K}_{df,3}^{-1} + F_3] = 0 \longrightarrow \mathcal{K}_{df,3}(E^*) \checkmark$

Relating $\mathcal{K}_{df,3}$ to \mathcal{M}_3 First we relate $\mathcal{K}_{df,3}$ to a special choice of finite-volume correlator

MTH and Sharpe (2015)

Relating $\mathcal{K}_{df,3}$ to \mathcal{M}_3 First we relate $\mathcal{K}_{df,3}$ to a special choice of finite-volume correlator

With this analytic relation in hand we can... (a) Set $E \to E + i\epsilon$, (b) Send $L \to \infty$, (c) Send $\epsilon \to 0^+$.

Leads to an integral equation for the scattering amplitude

$$\mathcal{M}_3(E^*) = \mathcal{I}[\mathcal{K}_{\mathrm{df},3}(E^*), \mathcal{M}_2, \mathcal{M}_3(E^*)]$$

MTH and Sharpe (2015)
Current status

Model- & EFT-independent relation between

finite-volume energies and relativistic two-and-three particle scattering

Mathematical Requires energy is below four- or five-particle production threshold

- **Solution** Ignores (drops) suppressed volume effects ($e^{-M_{\pi}L}$)
- Only useful if one truncates angular momentum space

Briceño, MTH, Sharpe (2017) 💿 see also Pang, Hammer, Rusetsky and Döring, Mai

Current status

Model- & EFT-independent relation between

finite-volume energies and relativistic two-and-three particle scattering

Mathematical Requires energy is below four- or five-particle production threshold

- **Solution** Ignores (drops) suppressed volume effects ($e^{-M_{\pi}L}$)
- Only useful if one truncates angular momentum space

Markon Service And Service And Andrew And Andrew And Andrew And Andrew And Andrew Andrew Andrew Andrew Andrew

Assumes no sub-channel two-particle resonances

Derivation assumes identical scalar particles

Briceño, MTH, Sharpe (2017) 💿 see also Pang, Hammer, Rusetsky and Döring, Mai

Usability?

Mow do we make the two-particle formalism usable?

Truncate partial waves

Single partial wave

	N	
$\mathcal{M}_2(E_2^*,\theta^*) \approx$	$\sum_{\ell=0} P_{\ell}(\cos \theta^*) \mathcal{M}_{2,\ell}(E_2^*)$	

 $\mathcal{M}_2(E_2^*, \theta^*) \approx \mathcal{M}_{2,s}(E_2^*) \propto \frac{1}{p^* \cot \delta_0(p^*) - ip^*}$

Usability?

Mow do we make the two-particle formalism usable?

Truncate partial waves

Single partial wave

$$\mathcal{M}_2(E_2^*,\theta^*) \approx \sum_{\ell=0}^N P_\ell(\cos\theta^*) \mathcal{M}_{2,\ell}(E_2^*) \longrightarrow \mathcal{M}_2(E_2^*,\theta^*) \approx \mathcal{M}_{2,s}(E_2^*) \propto \frac{1}{p^* \cot \delta_0(p^*) - ip^*}$$

Usability?

Truncate partial waves

Single partial wave

$$\mathcal{M}_2(E_2^*,\theta^*) \approx \sum_{\ell=0}^N P_\ell(\cos\theta^*) \mathcal{M}_{2,\ell}(E_2^*) \longrightarrow \mathcal{M}_2(E_2^*,\theta^*) \approx \mathcal{M}_{2,s}(E_2^*) \propto \frac{1}{p^* \cot \delta_0(p^*) - ip^*}$$

At fixed energy $\frac{\mathcal{M}_2(E_2^*, \theta^*)}{\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3)}$ is a smooth function on a compact space.

Further investigation is needed to understand suppression of higher $\mathcal{K}_{\mathrm{df},3,n}(E^*)$

Numerics (keeping only s-wave and $\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3) \approx \mathcal{K}_{df,3}^{iso}(E^*)$)

 $1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}}(E^*) = -F_3^{\mathrm{iso}}[E,\vec{P},L,\mathcal{M}_2^s] \qquad \mathcal{M}_3(E^*,\Omega_3',\Omega_3) = \mathcal{S}\left[\mathcal{D} + \mathcal{L}\frac{1}{1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}} + F_{3,\infty}^{\mathrm{iso}}}\mathcal{R}\right]$

For the numerical approach we restrict attention to... $p^* \cot \delta_0(p^*) = -\frac{1}{a}$, $\vec{P} = 0$

Then the quantization condition is based on $F_3^{iso}(E,L,a)$

Briceño, Hansen and Sharpe (2018)

Numerics (keeping only s-wave and $\mathcal{K}_{df,3}(E^*, \Omega'_3, \Omega_3) \approx \mathcal{K}_{df,3}^{iso}(E^*)$)

 $1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}}(E^*) = -F_3^{\mathrm{iso}}[E,\vec{P},L,\mathcal{M}_2^s] \qquad \mathcal{M}_3(E^*,\Omega_3',\Omega_3) = \mathcal{S}\left[\mathcal{D} + \mathcal{L}\frac{1}{1/\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}} + F_{3,\infty}^{\mathrm{iso}}}\mathcal{R}\right]$

For the numerical approach we restrict attention to... $p^* \cot \delta_0(p^*) = -\frac{1}{a}$, $\vec{P} = 0$

Briceño, Hansen and Sharpe (2018)

Provides a useful benchmark: Deviations measure three-particle physics

$$i\mathcal{M}_3 = \mathcal{S}\left[\underbrace{i\mathcal{M}_2}_{i\mathcal{M}_2} + \underbrace{i\mathcal{M}_2}_{i\mathcal{M}_2} + \cdots\right]$$

Provides a useful benchmark: Deviations measure three-particle physics

Briceño, Hansen and Sharpe (2018)

Provides a useful benchmark: Deviations measure three-particle physics

Briceño, Hansen and Sharpe (2018)

$\mathcal{K}_{\mathrm{df},3}^{\mathrm{iso}}(E) = 0$ solutions

Straightforward to vary a and to study large volumes

Still lots to do

- Finish result with intermediate twoparticle resonances
- Extend to non-identical, non-degenerate, multiple channels, spin
- Study subduction to finite-volume irreps
- Understand rigorous parametrizations for the infinite-volume observables
- Convince practitioners that the formalism is mature
- Reliably measure finite-volume spectra
- Extract three-particle scattering from LQCD

Big picture: making progress, but not quite there yet

Outline

n-particle inclusive rates

Outline

n-particle inclusive rates

Based on MTH, H. Meyer & D. Robaina, (1704.08993)

Rates instead of amplitudes...

Finite-volume quantities are used to determine scattering and transition amplitudes

Rates instead of amplitudes...

Finite-volume quantities are used to determine scattering and transition amplitudes

As the energy increases and more channels open, this becomes increasingly challenging

 $E_n(L) \longleftarrow \begin{array}{l} \text{Contains information about} \\ \text{all open channels with given } \pi\pi, \pi\pi\pi\pi, K\overline{K}, \cdots \\ \text{QCD quantum numbers} \end{array}$

Rates instead of amplitudes...

Finite-volume quantities are used to determine scattering and transition amplitudes

As the energy increases and more channels open, this becomes increasingly challenging

 $E_n(L) \longleftarrow \begin{array}{l} \mbox{Contains information about} \\ \mbox{all open channels with given } \pi\pi, \pi\pi\pi\pi, K\overline{K}, \cdots \\ \mbox{QCD quantum numbers} \end{array}$

Suppose we attempt an "easier" task: Total production rates

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \left| \begin{array}{c} \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \\ + \int d\Phi \left| \begin{array}{c} \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \\$$

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \bigg| \underbrace{\gamma_*}_{\bullet} \bigg|^2 + \cdots$$

$$\sigma_{\pi\gamma^* \to X} \propto \sum_{\alpha} \int d\Phi_{\alpha} |\langle E, \mathbf{p}, \alpha, \text{out} | \mathcal{J}(0) | \pi \rangle|^2$$

proportional
because of missing
kinematic factors
$$\sigma_{\pi\gamma^* \to X} \propto \sum_{\alpha} \int d\Phi_{\alpha} |\langle E, \mathbf{p}, \alpha, \text{out} | \mathcal{J}(0) | \pi \rangle|^2$$

$$\pi\pi, \ \pi\pi\pi\pi, \ K\overline{K}, \cdots$$

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \bigg| \underbrace{\gamma_*}_{\bullet} \bigg|^2 + \cdots$$

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \bigg| \underbrace{\gamma_*}_{\bullet} \bigg|^2 + \cdots$$

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \bigg| \underbrace{\gamma_*}_{\bullet} \bigg|^2 + \cdots$$

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \bigg| \underbrace{\gamma_*}_{\bullet} \bigg|^2 + \cdots$$

This rate is related to the matrix element of the current...

$$\begin{split} \sigma_{\pi\gamma^* \to X} &\propto \sum_{\alpha} \int d\Phi_{\alpha} |\langle E, \mathbf{p}, \alpha, \operatorname{out} | \mathcal{J}(0) | \pi \rangle|^2 \\ &\propto \int_{\operatorname{all states, } (P', \alpha')} (2\pi)^4 \delta^4 (P' - P) \langle \pi | \mathcal{J}^{\dagger}(0) | E', \mathbf{p}', \alpha' \rangle \langle E', \mathbf{p}', \alpha' | \mathcal{J}(0) | \pi \rangle \\ &\propto \int d^4 x \; e^{iqx} \langle \pi | e^{i\hat{P} \cdot x} \mathcal{J}^{\dagger}(0) e^{-i\hat{P} \cdot x} \int_{\operatorname{all states, } (P', \alpha')} |E', \mathbf{p}', \alpha' \rangle \langle E', \mathbf{p}', \alpha' | \mathcal{J}(0) | \pi \rangle \\ &\propto \int d^4 x \; e^{iqx} \langle \pi | \mathcal{J}^{\dagger}(x) \mathcal{J}(0) | \pi \rangle \end{split}$$

This motivates the hadronic tensor...

$$W_{\mu\nu}(p,q) \equiv \int d^4x \ e^{iqx} \langle \pi, p | \mathcal{J}^{\dagger}_{\mu}(x) \mathcal{J}_{\nu}(0) | \pi, p \rangle$$

Potential applications

Heavy-flavor decays

The idea is to describe systems where many hadrons are produced and they are not individually detected

$$\sigma_{\pi\gamma^* \to X} \equiv \int d\Phi \left| \begin{array}{c} \mathbf{M} \\ \mathbf{M} \\$$

See also... Liu, Dong (hep-ph/9306299), Liu (arXiv:1703.04690), Hashimoto (arXiv:1703.01881), Chambers *et al.* (arXiv:1703.01153)

Can we calculate this using LQCD? $W_{\mu\nu}(p,q) \equiv \int d^4x \ e^{iqx} \langle \pi, p | \mathcal{J}^{\dagger}_{\mu}(x) \mathcal{J}_{\nu}(0) | \pi, p \rangle$

Can we calculate this using LQCD? $W_{\mu\nu}(p,q) \equiv \int d^4x \ e^{iqx} \langle \pi, p | \mathcal{J}^{\dagger}_{\mu}(x) \mathcal{J}_{\nu}(0) | \pi, p \rangle$

The main obstacles are finite volume and Euclidean time

Can we calculate this using LQCD? $W_{\mu\nu}(p,q) \equiv \int d^4x \ e^{iqx} \langle \pi, p | \mathcal{J}^{\dagger}_{\mu}(x) \mathcal{J}_{\nu}(0) | \pi, p \rangle$

The main obstacles are finite volume and Euclidean time

What is the closest lattice quantity?

$$G_{\mu\nu}(\tau, \mathbf{q}, L) \propto \frac{\langle \pi_{\mathbf{p}}(\tau_f) \mathcal{J}^{\dagger}_{\mu}(\tau, \mathbf{q}) \mathcal{J}_{\nu}(0) \pi_{\mathbf{p}}(\tau_i) \rangle_{\text{conn}}}{\langle \pi_{\mathbf{p}}(\tau_f) \pi(\tau_i) \rangle}$$

Can we calculate this using LQCD?

$$W_{\mu\nu}(p,q) \equiv \int d^4x \ e^{iqx} \langle \pi, p | \mathcal{J}^{\dagger}_{\mu}(x) \mathcal{J}_{\nu}(0) | \pi, p \rangle$$

The main obstacles are finite volume and Euclidean time

Our goal...

(a) This is what we have... $G_{\nu\nu}(\tau, \mathbf{q}, L) = \sum_{n} e^{-E_n(L)\tau} |\langle E_n(L), \mathbf{p}_x | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle_L |^2$

(b) This is what we want... $W_{\nu\nu}(p,q) = \int_{\text{all states},E'} (2\pi)\delta(E-E') |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

Our goal...

(a) This is what we have... $G_{\nu\nu}(\tau, \mathbf{q}, L) = \sum_{n} e^{-E_n(L)\tau} |\langle E_n(L), \mathbf{p}_x | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle_L|^2$

(b) This is what we want... $W_{\nu\nu}(p,q) = \int_{\text{all states},E'} (2\pi)\delta(E-E') |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

To go from (a) to (b) one must first take the infinite-volume limit

Our goal...

(a) This is what we have... $G_{\nu\nu}(\tau, \mathbf{q}, L) = \sum_{n} e^{-E_n(L)\tau} |\langle E_n(L), \mathbf{p}_x | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle_L |^2$

(b) This is what we want... $W_{\nu\nu}(p,q) = \int_{\text{all states},E'} (2\pi)\delta(E-E') |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

To go from (a) to (b) one must first take the infinite-volume limit

The importance of infinite-volume

Suppose we take some (large) finite volume...

$$G_{\nu\nu}(\tau, \mathbf{q}, L) = \sum_{n} e^{-E_{n}(L)\tau} |\langle E_{n}(L), \mathbf{p}_{x} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle_{L} |^{2}$$

The the replacement
$$\int_{E}^{1} e^{-E'\tau} \int_{E}^{1} |\langle E_{n}(L), \mathbf{p}_{x} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle_{L} |^{2}$$

and make

The importance of infinite-volume

Suppose we take some (large) finite volume...

This does not give a useful estimate

For a fixed volume the sum over delta functions does **not** directly give a useful estimate of the infinite-volume target quantity

Our goal (cont.)...

Suppose we could send $L \to \infty$

 $\lim_{L \to \infty} G_{\nu\nu}(\tau, \mathbf{q}, L) = \int_{\text{all states}, E'} e^{-E'\tau} |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$
Our goal (cont.)...

Suppose we could send $L \to \infty$

 $\lim_{L \to \infty} G_{\nu\nu}(\tau, \mathbf{q}, L) = \int_{\text{all states}, E'} e^{-E'\tau} |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

Then the remaining step is an inverse Laplace transform

Our goal (cont.)...

Suppose we could send $L \to \infty$

 $\lim_{L \to \infty} G_{\nu\nu}(\tau, \mathbf{q}, L) = \int_{\text{all states}, E'} e^{-E'\tau} |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

Then the remaining step is an inverse Laplace transform

This amounts to forming clever linear combinations...

 $q_1(E)e^{-E'a_{\tau}} + q_2(E)e^{-E'2a_{\tau}} + q_3(E)e^{-E'3a_{\tau}} + \dots \approx \delta(E - E')$

Our goal (cont.)...

Suppose we could send $L \to \infty$

 $\lim_{L \to \infty} G_{\nu\nu}(\tau, \mathbf{q}, L) = \int_{\text{all states}, E'} e^{-E'\tau} |\langle E', \mathbf{p}_x, \text{out} | \mathcal{J}_{\nu}(0) | \pi, \mathbf{p} \rangle|^2$

Then the remaining step is an inverse Laplace transform

This amounts to forming clever linear combinations...

$$q_1(E)e^{-E'a_{\tau}} + q_2(E)e^{-E'2a_{\tau}} + q_3(E)e^{-E'3a_{\tau}} + \dots \approx \delta(E - E')$$

In fact this is possible...

Practical limitations

One cannot strictly take the infinite-volume limit...

Practical limitations

One cannot strictly take the infinite-volume limit...

and the inverse problem is not so easily defeated! $G(\tau) = \int_0^\infty dE' e^{-E'\tau} \rho(E') \longrightarrow \rho(E)$ $a_i(E)$

Practical limitations

One cannot strictly take the infinite-volume limit...

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined

For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined

For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

Developed by geophysicists Backus and Gilbert in 1967

$$G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

Developed by geophysicists Backus and Gilbert in 1967

Linear, model-independent method that gives a *smeared* solution with a *known resolution function*

$$G(\tau) = \int_0^\infty d\omega \ \rho(\omega) \ e^{-\omega\tau} \longrightarrow \ \widehat{\rho}(\overline{\omega}) = \int_0^\infty d\omega \ \widehat{\delta}_\Delta(\overline{\omega},\omega) \ \rho(\omega)$$

$$G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

Developed by geophysicists Backus and Gilbert in 1967

Linear, model-independent method that gives a *smeared* solution with a *known resolution function*

$$G(\tau) = \int_0^\infty d\omega \ \rho(\omega) \ e^{-\omega\tau} \longrightarrow \widehat{\rho}(\overline{\omega}) = \int_0^\infty d\omega \ \widehat{\delta}_\Delta(\overline{\omega},\omega) \ \rho(\omega) = \sum_i q_i(\overline{\omega}) G(\tau_i)$$

$$G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

Developed by geophysicists Backus and Gilbert in 1967

Linear, model-independent method that gives a *smeared* solution with a *known resolution function*

$$G(\tau) = \int_0^\infty d\omega \ \rho(\omega) \ e^{-\omega\tau} \longrightarrow \ \widehat{\rho}(\overline{\omega}) = \int_0^\infty d\omega \ \widehat{\delta}_\Delta(\overline{\omega},\omega) \ \rho(\omega) = \sum_i q_i(\overline{\omega}) G(\tau_i)$$

$$G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Backus-Gilbert method potentially resolves both...

Developed by geophysicists Backus and Gilbert in 1967

Linear, model-independent method that gives a *smeared* solution with a *known resolution function*

$$G(\tau) = \int_0^\infty d\omega \ \rho(\omega) \ e^{-\omega\tau} \longrightarrow \ \widehat{\rho}(\overline{\omega}) = \int_0^\infty d\omega \ \widehat{\delta}_\Delta(\overline{\omega},\omega) \ \rho(\omega) = \sum_i q_i(\overline{\omega}) G(\tau_i)$$

The quality of the data determines the **resolution**

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Two birds with one stone

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined For any L, numerical values of ρ contain no useful information

Two birds with one stone

Backus-Gilbert tackles the inverse problem by balancing **resolution** and **stability**

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined

For any L, numerical values of ρ contain no useful information

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_0^\infty dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined

For any L, numerical values of ρ contain no useful information

 $G_{\mu\nu}(\tau, \mathbf{q}, L) = \int_{0}^{\infty} dE_x \ W_{\mu\nu}(p, q; L) \ e^{-E_x\tau}$

The inverse Laplace transform is numerically ill-defined

For any L, numerical values of ρ contain no useful information

normalization factors

$$R_i \equiv \int_0^\infty dE' e^{-E'\tau_i}$$

spread matrix
$$W_{ij}(E) = \int_0^\infty dE' e^{-E'\tau_i} (E - E')^2 e^{-E'\tau_j}$$

optimal coefficients

$$q_i(E) = \frac{\left[W(E) + \lambda S\right]^{-1} \cdot R}{R \cdot \left[W(E) + \lambda S\right]^{-1} \cdot R}$$

covariance

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

$$\sum_{i} q_i(E) G_{\mu\nu}(\tau_i, \mathbf{q}, L) = \widehat{W}_{\mu\nu}(p, q, L, \Delta)$$

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \,\rho(\omega, L) \,\widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \, \rho(\omega, L) \, \widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

To gain intuition on this consider a simple **example**

$$\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \left[\frac{1}{L^3} \sum_{\mathbf{k}} \frac{\delta(\omega - 2\omega_{\mathbf{k}})}{4\omega_{\mathbf{k}}^2} \right] \frac{e^{-(\overline{\omega} - \omega)^2/(2\Delta^2)}}{\sqrt{2\pi}\Delta}$$

spectral function

free, two-particle Gaussian resolution function

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \, \rho(\omega, L) \, \widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

To gain intuition on this consider a simple **example**

$$\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \left[\frac{1}{L^3} \sum_{\mathbf{k}} \frac{\delta(\omega - 2\omega_{\mathbf{k}})}{4\omega_{\mathbf{k}}^2} \right] \frac{e^{-(\overline{\omega} - \omega)^2/(2\Delta^2)}}{\sqrt{2\pi}\Delta}$$

spectral function

free, two-particle Gaussian resolution function

 Δ to 0 first gives a useless spectral function...

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \, \rho(\omega, L) \, \widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

To gain intuition on this consider a simple **example**

$$\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \left[\frac{1}{L^3} \sum_{\mathbf{k}} \frac{\delta(\omega - 2\omega_{\mathbf{k}})}{4\omega_{\mathbf{k}}^2} \right] \frac{e^{-(\overline{\omega} - \omega)^2/(2\Delta^2)}}{\sqrt{2\pi}\Delta}$$

free, two-particle spectral function

Gaussian resolution function

Δ to 0 first gives a useless spectral function...

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \, \rho(\omega, L) \, \widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

To gain intuition on this consider a simple **example**

$$\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \left[\frac{1}{L^3} \sum_{\mathbf{k}} \frac{\delta(\omega - 2\omega_{\mathbf{k}})}{4\omega_{\mathbf{k}}^2} \right] \frac{e^{-(\overline{\omega} - \omega)^2/(2\Delta^2)}}{\sqrt{2\pi}\Delta}$$

free, two-particle spectral function

Gaussian resolution function

Δ to 0 first gives a useless spectral function...

Backus-Gilbert automatically smoothens $\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \, \rho(\omega, L) \, \widehat{\delta}_{\Delta}(\overline{\omega}, \omega)$

To gain intuition on this consider a simple **example**

$$\widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \left[\frac{1}{L^3} \sum_{\mathbf{k}} \frac{\delta(\omega - 2\omega_{\mathbf{k}})}{4\omega_{\mathbf{k}}^2} \right] \frac{e^{-(\overline{\omega} - \omega)^2/(2\Delta^2)}}{\sqrt{2\pi}\Delta}$$

free, two-particle spectral function

Gaussian resolution function

Δ to 0 first gives a useless spectral function...

The goal is to access an **optimal** trajectory in the $(\Delta, I/L)$ plane

Integrated spectral functions are generally **more precise** and less dependent on the choice of $(\Delta, I/L)$

To test the idea we studied a toy system with two open channels

 $\phi \to \pi \pi \pi, \ K \overline{K} \quad 3M_{\pi} < 2M_{K} \quad \Gamma_{\phi} \propto \langle \phi | \mathcal{H}(q) \mathcal{H}(0) | \phi \rangle$

To test the idea we studied a toy system with two open channels

 $\phi \to \pi \pi \pi, \ K \overline{K} \quad 3M_{\pi} < 2M_{K} \quad \Gamma_{\phi} \propto \langle \phi | \mathcal{H}(q) \mathcal{H}(0) | \phi \rangle$

(1) Determine infinite-volume spectral function perturbatively

(2) Determine finite-volumelattice correlator perturbatively

(3) Applied Backus Gilbert using a correlation matrix **from lattice data**

To test the idea we studied a **toy system** with two open channels

figures by D. Robaina

To test the idea we studied a toy system with two open channels

figures by D. Robaina

To test the idea we studied a toy system with two open channels

figures by D. Robaina

Still lots to do

Develop formal strategies for estimating the ordered double limit Test the approach in a numerical lattice calculation

Extend the approach to multiple incoming hadrons, other observables Investigate the role of QED

Explore combining this with the exclusive ideas (Lüscher and Lellouch-Lüscher)

Big Picture: New idea that needs to be explored

Thanks for listening!