The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

Antoine Gérardin

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

1

Frontiers in Lattice Quantum Field Theory

Madrid, May 21 2018

Antoine Gérardin

The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

n

he pion-pole contributic

Direct lattice calculation

Forward HLbL scattering amplitude

Conclusion

 $(g-2)_{\mu}$: current status

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, 5^{th} order)	$116\ 584\ 718.846 \pm 0.037$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	6869.9 ± 42.1	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	102 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116 591 811 \pm 62$	
Experiment	$116\ 592\ 089\pm 63$	

ntroduction	The pion-pole contribution	Direct lattice calculation	Forward HLbL scattering amplitudes	Conclusion
$(q-2)_{\mu}$:	current status			

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, $5^{ m th}$ order)	$116\ 584\ 718.846 \pm 0.037$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6~869.9 \pm 42.1$	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	102 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116\ 591\ 811 \pm 62$	
Experiment	$116\ 592\ 089\pm 63$	

- $\Delta a_{\mu} = \frac{(g-2)_{\mu}}{2} = a_{\mu}^{\exp} a_{\mu}^{\operatorname{th}} = 278 \times 10^{11}$
 - $\rightarrow~~\sim 3-4~\sigma$ discrepancy between experiment and theory
- Future experiments at Fermilab and J-PARC : reduction of the error by a factor of 4
- Theory error is dominated by hadronic contributions
- Motivation for lattice QCD approach : \rightarrow first principle determination

 \rightarrow No reliance on experimental data

 \rightarrow A precision of $\sim 20~\%$ for HLbL would already be a big step

Introduction	The pion-pole contribution	Direct lattice calculation	Forward HLbL scattering amplitudes	Conclusion
$(q-2)_{\mu}$	current status			

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, $5^{ m th}$ order)	$116\ 584\ 718.846 \pm 0.037$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6~869.9 \pm 42.1$	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	116 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116\ 591\ 811 \pm 62$	
Experiment	$116\ 592\ 089\pm 63$	

Hadronic Vacuum Polarisation (HVP, α^2)

Hadronic Light-by-Light scattering (HLbL, α^3)

Previous estimates : model calculations


```
[de Rafael '94]
1) Chiral counting
2) N<sub>c</sub> counting
```

[extracted from A. Nyffeler's slide], units : $a_{\mu} \times 10^{11}$

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114 ± 10	_	114±13	99 \pm 16
axial vectors	$2.5{\pm}1.0$	$1.7{\pm}1.7$	_	22±5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	-7±7	-7±2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	_	_	_	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	_
quark loops	21±3	$9.7{\pm}11.1$	—	—	—	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136 ± 25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

- 1) Pseudoscalar contributions dominate numerically : transition form factors
- 2) Glasgow consensus : $a_{\mu}^{\mathrm{HLbL}} = (105 \pm 26) \times 10^{-11}$

3

3) Results are in good agreement but errors are difficult to estimate (model calculations)

Antoine Gérardin

The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclusion

New strategies : first principle determinations of HLbL

Dispersive approach

[Colangelo et al. '14, '15], [Pauk, Vanderhaeghen '14]

- Similar to the HVP, but more difficult :
 - \rightarrow Many dispersion relations (19 vs 1 for HVP!)
 - \rightarrow Experimental data are often missing
- LQCD can provide inputs
 - \rightarrow pion-pole contribution (dominant), TFFs

Direct lattice calculation

- 4-pt correlation function
 - \rightarrow HVP : only a 2-pt correlation function
 - \rightarrow very challenging
 - \rightarrow but $\mathcal{O}(10~\%)$ precision needed
- Two groups :

[RBC/UKQCD] [Mainz]

Outline

• Pion-pole contribution on the lattice

- \hookrightarrow Dominant contribution to the HLbL scattering in $(g-2)_{\mu}$
- \hookrightarrow Can be used to estimate FSE in the full HLbL calculation
- $\hookrightarrow \mathsf{First} \ \mathsf{principle} \ \mathsf{calculation}$

• Direct lattice QCD calculation

- \hookrightarrow Only one collaboration has published results so far [Blum et. al 14', 16']
- \hookrightarrow I will present the Mainz strategy

$\begin{array}{c} & & \\$

• HLbL forward scattering amplitudes

- \hookrightarrow Full HLbL amplitudes contain more info than just a_{μ}
- \hookrightarrow Extract information about single-meson transition form factor

The pion-pole contribution

In collaboration with Harvey Meyer and Andreas Nyffeler

$$a_{\mu}^{\text{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) + w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0)$$

- \rightarrow Product of one single-virtual and one double-virtual transition form factors (spacelike virtualities) $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$ are known model-independent weight functions
- \rightarrow Weight functions are concentrated at small momenta below 1 GeV (here for $\tau = -0.5$)

Present status :

- Experimental results available for the single-virtual form factor
- And only for relatively large virtualities $Q^2 > 0.6 \ {\rm GeV}^2$
- The theory imposes strong constraints for the normalisation and the asymptotic behavior of the TFF

 \hookrightarrow Anomaly constraint $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = 1/(4\pi^2 F_{\pi})$

 \hookrightarrow Brodsky-Lepage, OPE for large virtualities

 $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(Q^2, 0) \sim 1/Q^2$, $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(Q^2, Q^2) \sim 1/Q^2$

- \hookrightarrow Most evaluations of the pion-pole contribution are therefore based on phenomenological models
- \hookrightarrow Systematic errors are difficult to estimate

8

 \hookrightarrow Recent result using dispersion framework [Kubis et al.]

Lattice QCD is particularly well suited to compute the form factor in the energy range relevant to g-2 !

$$\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2) = -\int d\tau \, e^{\omega_1 \tau} \int d^3 z \, e^{-i\vec{q}_1 \vec{z}} \, \langle 0|T\left\{J_{\mu}(\vec{z}, \tau) J_{\nu}(\vec{0}, 0)\right\} |\pi^0(p)\rangle$$

• We consider the following 3-pt correlation function

$$C^{(3)}_{\mu\nu}(\tau, t_{\pi}; \vec{q_1}) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_f) J_{\mu}(\vec{z}, t_i) P(\vec{x}, t_0) \right\} \right\rangle e^{-i\vec{q_1}\vec{z}}$$

• Finite time-extent of the lattice :

 \rightarrow Fit the 3-pt correlation function at large τ (e.g. assuming a VMD)

 \rightarrow Use the model to integrate up to $\tau \rightarrow \infty$

• There are also (quark) disconnected contributions

 $\rightarrow \mathcal{O}(0.5 \ \%)$ on E5 with $m_{\pi} = 340 \ \mathrm{MeV}$

Introduction	The pion-pole contribution	Direct lattice calculation	Forward HLbL scattering amplitudes	Conclusion
Lattice setu	qL			

- ▶ Lattice QCD is not a model : specific regularisation of the theory adapted to numerical simulations
- ▶ However there are systematic errors that we need to understand :
 - 1) We used $N_f = 2$ simulations (CLS ensembles)

 \rightarrow we are currently analysing the $N_f = 2 + 1$ CLS ensembles with improved statistics

2) Finite lattice spacing : discretisation errors

 \rightarrow 3 lattice spacings (a = 0.075, 0.065, 0.048 fm) : extrapolation to the continuum limit a = 0

3) Unphysical quark masses

10

 \rightarrow Different simulations with pion mass in the range [190-440] MeV : extrapolation to $m_{\pi} = m_{\pi}^{exp}$

4) Finite volume

▶ Results for one of the eight ensembles with a = 0.048 fm and $m_{\pi} = 270$ MeV

Extrapolation to the physical point

11

- Use phenomenological models to describe the lattice data
- e.g. VMD model , LMD model (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

• Extrapolate the model parameters to the continuum and chiral limit

▶ Results for one of the eight ensembles with a = 0.048 fm and $m_{\pi} = 270$ MeV

Extrapolation to the physical point

- Use phenomenological models to describe the lattice data
- or the LMD+V model [Knecht, Nyffeler '01]

11

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

• Extrapolate the model parameters to the continuum and chiral limit

 \rightarrow VMD failed to describe our data : bad χ^2

12

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) + w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0)$$

$$a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$$

[Gérardin, Nyffeler, Meyer '16]

 \rightarrow most model calculations yield results in the range : $a_{\mu}^{\mathrm{HLbL};\pi^0} = (50 - 80) \times 10^{-11}$

- \rightarrow In the same ballpark as previous estimate : HLbL is unlikely to explain the 3-4 σ discrepancy
- \rightarrow Result using the dispersive framework : $a_{\mu}^{\text{HLbL};\pi^0} = (62.6 \pm 3.0) \times 10^{-11}$ [Hoferichter et al. '18]

Antoine Gérardin

The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

▶ Full $\mathcal{O}(a)$ -improvement of the vector currents :

 \rightarrow Requires the improvement coefficient c_V (for both the local and the conserved vector currents) \rightarrow Also b_V and \overline{b}_V for the local vector current

$$J^{R,I}_{\mu}(x) = Z_V \left(1 + 3\,\overline{b}_V \,a\overline{m} + b_V am_l \right) \left[J_{\mu}(x) + ac_V \,\partial_{\nu} T_{\mu\nu}(x) \right]$$

- ▶ New frame with $\vec{p} \neq \vec{0}$
 - \rightarrow We can probe much larger virtualities in the single-virtual case

$N_f = 2 + 1$ CLS ensembles

- ► Four lattice spacings
- One ensemble with physical pion mass (Correlators not yet computed)
- Several volumes

▶ Full $\mathcal{O}(a)$ -improvement of the vector currents :

 \rightarrow Requires the improvement coefficient c_V (for both the local and the conserved vector currents) \rightarrow Also b_V and \overline{b}_V for the local vector current

$$J^{R,I}_{\mu}(x) = Z_V \left(1 + 3\,\overline{b}_V \,a\overline{m} + b_V am_l \right) \left[J_{\mu}(x) + ac_V \,\partial_{\nu} T_{\mu\nu}(x) \right]$$

- ▶ New frame with $\vec{p} \neq \vec{0}$
 - \rightarrow We can probe much larger virtualities in the single-virtual case

▶ Preliminary results for one ensemble with $a \approx 0.05 \text{ fm}$ and $m_{\pi} = 280 \text{ MeV}$

- ▶ Black point : pion rest frame $(\vec{p} = \vec{0})$
- ▶ Blue point : new frame with $\vec{p} = 2\pi/L\vec{z}$

In collaboration with Nils Asmussen, Harvey Meyer and Andreas Nyffeler

• RBC/UKQCD Collaboration

- ▶ QCD + QED simulations [Hayakawa et al. 2005; Blum et al. 2015]
- ▶ QCD + QED kernel estimated stochastically in finite volume [Blum et al. 2016, 2017]
- ▶ Some results on the connected contribution and leading disconnected are already published
- Mainz group
 - ▶ Exact QED kernel in position space [Asmussen et al. 2015, 2016, and in prep.]
 - ► Forward light-by-light scattering amplitudes [A.G et al. 2017]

Exact QED kernel in infinite volume

• For the HVP contribution : time momentum representation (TMR) [Bernecker, Meyer '12]

Direct lattice calculation

$$a_{\mu}^{
m HVP} = \left(rac{lpha}{\pi}
ight)^2 \int {
m d} x_0 \; K(x_0) \; G(x_0) \;, \qquad G(x_0) = -rac{1}{3} \sum_{k=1}^3 \sum_{ec x} \; \langle V_k(x) V_k(0)
angle \;,$$

17

• For the HVP contribution : time momentum representation (TMR) [Bernecker, Meyer '12]

Direct lattice calculation

$$a_{\mu}^{\mathrm{HVP}} = \left(rac{lpha}{\pi}
ight)^2 \int \mathrm{d}x_0 \; K(x_0) \; G(x_0) \;, \qquad G(x_0) = -rac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \; \langle V_k(x) V_k(0)
angle \;$$

• Compute the QED part perturbatively in the continuum and in infinite volume (position space) [J. Green et al. '16] [N. Asmussen et al. '16 '17]

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$
$$i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^{4}z \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle$$

 $\rightarrow \widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) \text{ is the four-point correlation function computed on the lattice}$ $\rightarrow \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \text{ is the QED kernel, computed semi-analytically (infra-red finite)}$ $\rightarrow \text{Avoid } 1/L^2 \text{ finite-volume effects from the massless photons}$

Conclusion

Exact QED kernel in infinite volume

• For the HVP contribution : time momentum representation (TMR) [Bernecker, Meyer '12]

Direct lattice calculation

$$a_{\mu}^{\mathrm{HVP}} = \left(rac{lpha}{\pi}
ight)^2 \int \mathrm{d}x_0 \; K(x_0) \; G(x_0) \;, \qquad G(x_0) = -rac{1}{3} \sum_{k=1}^3 \sum_{ec{x}} \; \langle V_k(x) V_k(0)
angle \;,$$

• Compute the QED part perturbatively in the continuum and in infinite volume (position space) [J. Green et al. '16] [N. Asmussen et al. '16 '17]

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$
$$i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^{4}z \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle$$

- $\rightarrow \widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$ is the four-point correlation function computed on the lattice $\rightarrow \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is the QED kernel, computed semi-analytically (infra-red finite)
- \rightarrow Avoid $1/L^2$ finite-volume effects from the massless photons
- On the lattice :
 - \rightarrow integration over x and z are performed explicitly on the lattice (e.g. using sequential propagators ...)
 - \rightarrow the remaining part depends only on |y|

- \rightarrow one-dimensional integral, can be sampled using different values of |y|
- \rightarrow This is an expensive calculation !

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclusion QED Kernel : technical details

The QED kernel $\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ can be decomposed into several tensors

$$\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = \sum_{A=\mathrm{I},\mathrm{II},\mathrm{III}} \mathcal{G}^{A}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda} T^{(A)}_{\alpha\beta\delta}(x,y)$$

- $\mathcal{G}^{A}_{\delta[\rho\sigma]\mu\alpha\nu\beta\lambda}$ = traces of gamma matrices \rightarrow sums of products of Kronecker deltas
- The tensors $T^{(A)}_{\alpha\beta\delta}$ are decomposed into a scalar S, vector V and tensor T part

$$T_{\alpha\beta\delta}^{(\mathrm{I})}(x,y) = \partial_{\alpha}^{(x)}(\partial_{\beta}^{(x)} + \partial_{\beta}^{(y)})V_{\delta}(x,y)$$
$$T_{\alpha\beta\delta}^{(\mathrm{II})}(x,y) = m\partial_{\alpha}^{(x)}\left(T_{\beta\delta}(x,y) + \frac{1}{4}\delta_{\beta\delta}S(x,y)\right)$$
$$T_{\alpha\beta\delta}^{(\mathrm{III})}(x,y) = m(\partial_{\beta}^{(x)} + \partial_{\beta}^{(y)})\left(T_{\alpha\delta}(x,y) + \frac{1}{4}\delta_{\alpha\delta}S(x,y)\right)$$

They are parametrized by six weight functions

$$\begin{split} S(x,y) &= 0\\ V_{\delta}(x,y) &= x_{\delta} \,\bar{\mathfrak{g}}^{(1)} + y_{\delta} \,\bar{\mathfrak{g}}^{(2)}\\ T_{\alpha\beta}(x,y) &= (x_{\alpha}x_{\beta} - \frac{x^2}{4}\delta_{\alpha\beta}) \,\bar{\mathfrak{l}}^{(1)} + (y_{\alpha}y_{\beta} - \frac{y^2}{4}\delta_{\alpha\beta}) \,\bar{\mathfrak{l}}^{(2)} + (x_{\alpha}y_{\beta} + y_{\alpha}x_{\beta} - \frac{x \cdot y}{2}\delta_{\alpha\beta}) \,\bar{\mathfrak{l}}^{(3)} \end{split}$$

- the weight functions depend on the three variables x^2 , $x\cdot y = |x||y|\cos\beta$ and y^2
- Semi-analytical expressions for the weight functions have been computed to about 5 digits precision

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = \int dy \, f(y)$$

• Two checks of the QED kernel in the continuum and infinite volume

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = \int dy \, f(y)$$

• Two checks of the QED kernel in the continuum and infinite volume

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = \int dy \, f(y)$$

• Two checks of the QED kernel in the continuum and infinite volume

19

Lepton-loop (analytical result known)

- integrand peaked at small distances
- height of the peak grows when $m_{\rm lepton}$ decreases
- we probe the QED kernel at small distances
- we reproduce the exact result at the percent level

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = \int dy \, f(y)$$

• Two checks of the QED kernel in the continuum and infinite volume

19

Lepton-loop (analytical result known)

- integrand peaked at small distances
- height of the peak grows when $m_{
 m lepton}$ decreases
- we probe the QED kernel at small distances
- we reproduce the exact result at the percent level

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = \int dy \, f(y)$$

• Two checks of the QED kernel in the continuum and infinite volume

Lepton-loop (analytical result known)

- integrand peaked at small distances
- height of the peak grows when m_{lepton} decreases
- we probe the QED kernel at small distances
- we reproduce the exact result at the percent level

 π^0 -pole contribution for a specific model

- assume a vector-meson dominance (VMD) model for Π
 - \rightarrow The analytical results is then known
- negative tail at large |y| : need large volumes!
- again, we reproduce the exact result at the percent level

[F. Jegerlehner and A. Nyffeler, '09)]

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

• Conservation of the vector current : $\partial_{\mu}J_{\mu}(x) = 0 \Rightarrow$ The QED kernel is not unique [RBC/UKQCD '17]

$$0 = \sum_{x} \partial_{\mu}^{(x)} \left(x_{\alpha} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y) \right) = \sum_{x} \widehat{\Pi}_{\rho, \alpha\nu\lambda\sigma}(x, y) + \sum_{x} x_{\alpha} \partial_{\mu}^{(x)} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y)$$

- \rightarrow we can add any fonction f(y) to the standard QED kernel
- \rightarrow differ by volume effects (and discretisation effects for the local vector current)
- \rightarrow same argument valid for the other variable x

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

• Conservation of the vector current : $\partial_{\mu}J_{\mu}(x) = 0 \Rightarrow$ The QED kernel is not unique [RBC/UKQCD '17]

$$0 = \sum_{x} \partial_{\mu}^{(x)} \left(x_{\alpha} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y) \right) = \sum_{x} \widehat{\Pi}_{\rho, \alpha\nu\lambda\sigma}(x, y) + \sum_{x} x_{\alpha} \partial_{\mu}^{(x)} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y)$$

 \rightarrow we can add any fonction f(y) to the standard QED kernel

 \rightarrow differ by volume effects (and discretisation effects for the local vector current) \rightarrow same argument valid for the other variable x

• Examples of possible subtractions (idea : subtract very short distance contributions)

$$\mathcal{L}^{(0)}(x,y) = \mathcal{L}(x,y) \qquad \Rightarrow \mathcal{L}^{(1)}(0,0) = 0$$

$$\mathcal{L}^{(1)}(x,y) = \mathcal{L}(x,y) - \frac{1}{2}\mathcal{L}(x,x) - \frac{1}{2}\mathcal{L}(y,y) \qquad \Rightarrow \mathcal{L}^{(1)}(x,x) = 0$$

$$\mathcal{L}^{(2)}(x,y) = \mathcal{L}(x,y) - \mathcal{L}(0,y) - \mathcal{L}(x,0) \qquad \Rightarrow \mathcal{L}^{(2)}(x,0) = \mathcal{L}^{(2)}(0,y) = 0$$

$$\mathcal{L}^{(3)}(x,y) = \mathcal{L}(x,y) - \mathcal{L}(0,y) - \mathcal{L}(x,x) + \mathcal{L}(0,x) \qquad \Rightarrow \mathcal{L}^{(3)}(0,y) = \mathcal{L}^{(3)}(x,x) = 0$$

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

• Conservation of the vector current : $\partial_{\mu}J_{\mu}(x) = 0 \Rightarrow$ The QED kernel is not unique [RBC/UKQCD '17]

$$0 = \sum_{x} \partial_{\mu}^{(x)} \left(x_{\alpha} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y) \right) = \sum_{x} \widehat{\Pi}_{\rho, \alpha\nu\lambda\sigma}(x, y) + \sum_{x} x_{\alpha} \partial_{\mu}^{(x)} \widehat{\Pi}_{\rho, \mu\nu\lambda\sigma}(x, y)$$

 \rightarrow we can add any fonction f(y) to the standard QED kernel

 \rightarrow differ by volume effects (and discretisation effects for the local vector current) \rightarrow same argument valid for the other variable x

• Examples of possible subtractions (idea : subtract very short distance contributions)

$$\mathcal{L}^{(0)}(x,y) = \mathcal{L}(x,y) \qquad \Rightarrow \mathcal{L}^{(1)}(0,0) = 0$$

$$\mathcal{L}^{(1)}(x,y) = \mathcal{L}(x,y) - \frac{1}{2}\mathcal{L}(x,x) - \frac{1}{2}\mathcal{L}(y,y) \qquad \Rightarrow \mathcal{L}^{(1)}(x,x) = 0$$

$$\mathcal{L}^{(2)}(x,y) = \mathcal{L}(x,y) - \mathcal{L}(0,y) - \mathcal{L}(x,0) \qquad \Rightarrow \mathcal{L}^{(2)}(x,0) = \mathcal{L}^{(2)}(0,y) = 0$$

$$\mathcal{L}^{(3)}(x,y) = \mathcal{L}(x,y) - \mathcal{L}(0,y) - \mathcal{L}(x,x) + \mathcal{L}(0,x) \qquad \Rightarrow \mathcal{L}^{(3)}(0,y) = \mathcal{L}^{(3)}(x,x) = 0$$

• Different definitions may affect :

 \rightarrow Discretization effects / Finite-size effects / Statistical precision of the estimator

Antoine Gérardin

$$a_{\mu}^{\text{LbL}} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

- $\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$ can be computed numerically for the lepton-loop
- The integral reduces to a 3-dimensional integration over the Lorentz invariants x^2 , y^2 and $x \cdot y$

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclus Lepton-loop in the continuum and infinite volume

$$a_{\mu}^{\rm LbL} = \frac{me^6}{3} \int d^4y \int d^4x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

- $\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$ can be computed numerically for the lepton-loop
- The integral reduces to a 3-dimensional integration over the Lorentz invariants x^2 , y^2 and $x \cdot y$

Antoine Gérardin

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclusion Pion-pole contribution in the continuum and infinite volume

$$a_{\mu}^{\pi^{0}-\text{pole}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclusion Pion-pole contribution in the continuum and infinite volume

$$a_{\mu}^{\pi^{0}-\text{pole}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

Introduction The pion-pole contribution Direct lattice calculation Forward HLbL scattering amplitudes Conclusion Pion-pole contribution in the continuum and infinite volume

$$a^{\pi^{0}-\text{pole}}_{\mu} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

▶ Until now, everything was done in the continuum and infinite volume (no lattice involved)

Lepton-loop on the lattice

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4y \int d^4x \ \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \ i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

• We now compute $\widehat{\Pi}(x,y)$ on the lattice (unit gauge field, lattice propagators)

- \rightarrow Use different lattice spacings / volumes
- \rightarrow blue and black points correspond to two different discretizations of the vector current
- \rightarrow standard kernel $\mathcal{L}^{(0)}(x,y)$: large discretization effects !

Antoine Gérardin

Lepton-loop on the lattice

$$a_{\mu}^{\rm HLbL} = \frac{me^6}{3} \int \,\,\mathrm{d}^4 y \int \,\,\mathrm{d}^4 x \,\,\mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \,\,i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$

• We now compute $\widehat{\Pi}(x,y)$ on the lattice (unit gauge field, lattice propagators)

 $\rightarrow \mathcal{L}^{(2)}(x,y)$ has much smaller discretization effects

23

ightarrow we can reproduce the known result ($a_{\mu}^{
m LbL}=0.15031 imes10^{-8}$) for the lepton-loop with a very good precision

 $\checkmark\,$ check of the QCD code

Antoine Gérardin

- Fully connected contribution
 - $x_{\rm src} \xrightarrow{y', \sigma'} z', \kappa' \xrightarrow{z', \kappa'} x', \rho' \xrightarrow{z_{\rm srk}} x_{\rm snk}$

• Leading 2+2 disconnected contribution

• Sub-dominant disconnected contributions (3+1, 2+1+1, 1+1+1+1)

- 2+2 disconnected diagrams are not negligible!
 - \rightarrow Large- N_c prediction : 2+2 disc \approx 50 % \times connected [Bijnens '16], [A. G et al. '17]
 - \rightarrow Disconnected contributions : only $\mathcal{O}(1\ \%)$ for the HVP !
- Other diagrams vanish in the SU(3) limit (at least one quark loop which couple to a single photon)
 - \rightarrow Smaller contributions, but might be relevant for $\mathcal{O}(10~\%)$ precision

FSE and the pion transition form factor

Pion-pole contribution :

- Dominant contribution (according to model calculation))
- Long-range : source of FSE on the lattice

Idea :

- Use the same set of ensembles as for the pion TFF
 - \rightarrow use our result to estimate and correct for the dominant FSE in the lattice calculation
 - \rightarrow the pion-pole contributes with a factor 34/9 in the fully connected piece

-25/9 in the 2+2 disconnected

- 1) The QED kernel in infinite volume is now known
- 2) We have now started the QCD calculation

25

3) During that time, we studied the forward LbL scattering amplitudes

Forward HLbL scattering amplitudes : axial, scalar and tensor mesons

In collaboration with Jeremy Green, Oleksii Gryniuk, Harvey Meyer, Vladimir Pascalutsa and Hartmut Wittig

- Pion-pole contribution $\sqrt{}$. Other contributions : more difficult on the lattice (resonances)
- Forward scattering amplitudes $\mathcal{M}_{\lambda_3\lambda_4\lambda_1\lambda_2}$

• Using parity and time invariance : only 8 independent amplitudes

$$\begin{aligned} (\mathcal{M}_{++,++} + \mathcal{M}_{+-,+-}), \ \mathcal{M}_{++,--}, \ \mathcal{M}_{00,00}, \ \mathcal{M}_{+0,+0}, \ \mathcal{M}_{0+,0+}, \ (\mathcal{M}_{++,00} + \mathcal{M}_{0+,-0}), \\ (\mathcal{M}_{++,++} - \mathcal{M}_{+-,+-}), \ (\mathcal{M}_{++,00} - \mathcal{M}_{0+,-0}) \end{aligned}$$

 \hookrightarrow Either even or odd with respect to ν

 \hookrightarrow The eight amplitudes have been computed on the lattice for different values of u,Q_1^2,Q_2^2

Strategy :

- 1) Compute all the forward LbL scattering amplitudes on the lattice [Green et. al '15]
- 2) Use a simple model to describe the lattice data (input : TFFs)
- 3) Extract information about TFFs by fitting the model parameters to lattice data

1) Optical theorem

2) Dispersion relations [Pascalutsa et. al '12]

<u>Once-subtracted sum rules</u> : crossing-symmetric variable $\nu = q_1 \cdot q_2$ $\mathcal{M}_{\text{even}}(\nu) = \mathcal{M}_{\text{even}}(0) + \frac{2\nu^2}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{1}{\nu'(\nu'^2 - \nu^2 - i\epsilon)} W_{\text{even}}(\nu')$

$$\mathcal{M}_{\rm odd}(\nu) = \nu \mathcal{M}_{\rm odd}(\nu) + \frac{2\nu^3}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{1}{\nu'(\nu'^2 - \nu^2 - i\epsilon)} W_{\rm odd}(\nu')$$

3) Higher mass singularities are suppressed with u^2 :

 \hookrightarrow Only a few states X are necessary to saturate the sum rules and reproduce the lattice data

 \hookrightarrow Assume monopole/dipole masses (fit parameters)

Forward HLbL scattering amplitudes Preliminary results : F7 - dependence on ν and Q_2^2

- Each plot correspond to a fixed Q_1^2
- Different colours correspond to different values of $\nu = Q_1^2 \cdot Q_2^2$

Antoine Gérardin

The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

Monopole and dipole masses : chiral extrapolations

Antoine Gérardin

The hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD

Introduction	The pion-pole contribution	Direct lattice calculation	Forward HLbL scattering amplitudes	Conclusion
Conclusion				

- ▶ There is a persistant $3-4~\sigma$ discrepancy between theory and experiment for the $(g-2)_{\mu}$
- ▶ Two new experiments (Fermilab and J-PARC) should reduce the experimental error by a factor 4
- ► The error is dominated by hadronic uncertainties

Pion-pole contribution

- \rightarrow First lattice QCD determination of $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = (65.0 \pm 8.3) \times 10^{-11}$
- \rightarrow The (dominant) π^0 -pole contribution can be computed precisely
- \rightarrow In progress : new calculation with $N_f = 2 + 1$, more statistics, full $\mathcal{O}(a)$ -improvement ...

Hadronic light-by-light scattering contribution

- \rightarrow lattice QCD is very promising
- \rightarrow The QED kernel in infinite volume is now known and checked
- \rightarrow We are now starting the full QCD calculation. Goal : 20~% accuracy in the near future

Beyond the pion-pole contribution

- \rightarrow The forward LbL scattering amplitudes provide more information than $a_{\mu}^{
 m HLbL}$ (single scalar)
- \rightarrow The lattice data can be described by a simple phenomenological model

Introduction	The pion-pole contribution	Direct lattice calculation	Forward HLbL scattering amplitudes	Conclusion
Conclusion				

- There is a persistant $3-4 \sigma$ discrepancy between theory and experiment for the $(g-2)_{\mu}$
- ▶ Two new experiments (Fermilab and J-PARC) should reduce the experimental error by a factor 4
- ► The error is dominated by hadronic uncertainties

Pion-pole contribution

- \rightarrow First lattice QCD determination of $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = (65.0 \pm 8.3) \times 10^{-11}$
- \rightarrow The (dominant) π^0 -pole contribution can be computed precisely
- \rightarrow In progress : new calculation with $N_f = 2 + 1$, more statistics, full $\mathcal{O}(a)$ -improvement ...

Hadronic light-by-light scattering contribution

- \rightarrow lattice QCD is very promising
- \rightarrow The QED kernel in infinite volume is now known and checked
- \rightarrow We are now starting the full QCD calculation. Goal : 20~% accuracy in the near future

Beyond the pion-pole contribution

32

- \rightarrow The forward LbL scattering amplitudes provide more information than $a_{\mu}^{
 m HLbL}$ (single scalar)
- \rightarrow The lattice data can be described by a simple phenomenological model

Thank you!