Lattice QCD studies of Muon g-2 and related topics

Taku Izubuchi (RBC\&UKQCD)

RIKEN BNL
Research Center

Contents

- g-2 HVP since [T. Blum 2003]

HPQCD
Riken-BNL-Columbia (RBC) /UKQCD Mainz
ETMC
BMW
Regensburg
HPQCD/FNAL/MILC
PACS

:

- adronic Light-by-Light (HLbL) on Lattice since [T. Blum et al 2005]

RBC/UKQCD
Mainz

- Inclusive tau decay [if time allowed] RBC/UKQCD

Lattice2017

Collaborators / Machines

g-2 DWF
HVP \& HLbL

> Tom Blum (Connecticut)
> Peter Boyle (Edinburgh)
> Norman Christ (Columbia)
> Vera Guelpers (Southampton) Masashi Hayakawa (Nagoya) James Harrison (Southampton) Taku Izubuchi (BNL/RBRC)

Christoph Lehner (BNL)
Kim Maltman (York)
Chulwoo Jung (BNL)
Andreas Jüttner (Southampton)
Luchang Jin (BNL)
Antonin Portelli (Edinburgh)

HVP Clover
on $(8.5 \mathrm{fm})^{3}$

Taku Izubuchi (BNL/RBRC)
Yoshinobu Kuramashi (Tsukuba/ AICS) Christoph Lehner (BNL) Eigo Shintani (RIKEN AICS)

Peter Boyle (Edinburgh)	Renwick James Hudspith (York)
Taku Izubuchi (BNL/RBRC)	Andreas Jüttner(Southampton)
Christoph Lehner (BNL)	Randy Lewis (Southampton)
Kim Maltman (York)	Hiroshi Ohki (RBRC/Nara Women)
Antonin Portelli (Edinburgh)	Matthew Spraggs (Edinburgh)

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

The RBC \& UKQCD collaborations

BNL and RBRC

Mattia Bruno Tomomi Ishikawa
Taku Izubuchi
Luchang Jin
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn
Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
David Murphy
Masaaki Tomii

Jiqun Tu
Bigeng Wang
Tianle Wang

University of Connecticut

Tom Blum
Dan Hoying
Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu
Luigi Del Debbio
Richard Kenway
Julia Kettle
Ava Khamseh
Brian Pendleton
Antonin Portelli
Tobias Tsang
Oliver Witzel
Azusa Yamaguchi

KEK
Julien Frison
University of Liverpool
Nicolas Garron
Peking University
Xu Feng
University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
Andrew Lawson
Edwin Lizarazo
Chris Sachrajda
York University (Toronto)
Renwick Hudspith

SM Theory

$$
\gamma^{\mu} \rightarrow \Gamma^{\mu}(q)=\left(\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right)
$$

- QED, hadronic, EW contributions

QED (5-loop) Aoyama et al.
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light (HIbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

$(g-2)_{\mu}$ SM Theory vs experiment

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$a_{\mu}^{\mathrm{QED}}=$	(11 658	471.808	± 0.015) $\times 10^{-10}$
${ }^{\text {EW }}$		15.4	+0.2	$) \times 10^{-10}$
$a_{\mu}^{\mathrm{had}, \mathrm{LOVVP}}=$	(694.91	± 4.27	$) \times 10^{-10}$
$a_{\mu}^{\text {fad, } \mathrm{HOVP}}=$		-9.84	± 0.07	$) \times 10^{-10}$
$a_{\mu}^{\text {had,lbl }}=$		10.5	± 2.6) $\times 10^{-10}$

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL

■ x4 or more accurate experiment FNAL, J-PARC
■ Our Goal : sub 1% accuracy for HVP, and \rightarrow 10\% accuracy for HLbL

G-2 from BSM sources

- Typical new particle contribute g-2

$$
\mathrm{g}-2 \sim \mathrm{C}\left(\mathrm{~m}_{\mu} / \mathrm{m}_{\mathrm{NP}}\right)^{2}
$$

- To explain current discrepancy

\mathcal{C}	1	$\frac{\alpha}{\pi}$	$\left(\frac{\alpha}{\pi}\right)^{2}$
M_{NP}	$2.0_{-0.3}^{+0.4} \mathrm{TeV}$	$100_{-13}^{+21} \mathrm{GeV}$	$5_{-1}^{+1} \mathrm{GeV}$

- SUSY (scalar-lepton)
- 2 Higgs doublet models Type-X,
- Dark photons
[A. Nyfler]
 from kinematical mixings
$\varepsilon \mathrm{F}_{\mu \nu} \mathrm{F}^{\prime}{ }_{\mu \nu}$

From: F. Curciarello, FCCP15, Capri, September 2015

muon anomalous magnetic moment

BNL g-2 till 2004: ~3 σ larger than SM prediction

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	$\mathbf{2 . 6}$
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal		≈ 1.6

FNAL E989 (began 2017-)
move storage ring from BNL
x4 more precise results, 0.14 ppm
J-PARC E34
ultra-cold muon beam
0.37 ppm then 0.1 ppm , also EDM

Precession of Mercury and GR

Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
0.0254	Oblateness of the sun (quadrupole moment)
42.98 ± 0.04	General relativity
5600.0	Total
5599.7	Observed

discrepancy recognized since 1859
http://worldnpa.org/abstracts/abstracts_6066.pdf precession of perihelion

Known physics

1915 New physics GR revolution

[Christoph Lehner et al. 1801.07224]

Hadronic Vacuum Polarization (HVP) contribution to g-2

Leading order of hadronic contribution (HYP)
 ξ

- Hadronic vacuum polarization (HVP)
$\mathrm{v}_{\mu} \cdot \mathrm{v}_{\mathrm{v}}=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{V}\left(q^{2}\right)$
quark's EM current: $\quad V_{\mu}=\sum_{f} Q_{f} \bar{f} \gamma_{\mu} f$
- Optical Theorem

$$
\operatorname{Im}_{\text {city }} \Pi_{V}(s)=\frac{s}{4 \pi \alpha} \sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow X\right)
$$

- Analycity

$$
\Pi_{V}(s)-\Pi_{V}(0)=\frac{k^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\operatorname{Im} \Pi_{V}(s)}{s\left(s-k^{2}-i \epsilon\right)}
$$

[F. Jegerlehner's lecture]

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)

$$
\begin{aligned}
& =\frac{\alpha}{\pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{d s}{s} \operatorname{Im} \Pi(s) K(s) \quad K(s)=\int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+\left(s / m_{\mu}^{2}\right)(1-x)} \\
& =\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2}\left[\int_{m_{\pi}^{2}}^{s_{\mathrm{cut}}} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{data}}(s)+\int_{s_{\mathrm{cut}}}^{\infty} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{pQCD}}(s)\right]
\end{aligned}
$$

Hagiwara, et al.
J.Phys. G38,085003 (2011)

g-2 from R-ratio

HVP from experimental data

- From experimental $\mathrm{e}+\mathrm{e}$ - total cross section total $(\mathrm{e}+\mathrm{e}-)$ and dispersion relation

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} d s K(s) \sigma_{\text {total }}(s)
$$

time like $q^{2}=s>=4 \mathrm{~m}_{\pi}{ }^{2}$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=(694.91 \pm 4.27) \times 10^{-10} \\
& a_{\mu}^{\mathrm{HVP}, \mathrm{HO}}=(-9.84 \pm 0.07) \times 10^{-10} \\
& \text { [~ } 0.6 \text { \% err] }
\end{aligned}
$$

c)

d)

KNT18 $a_{\mu}^{\text {SM }}$ update

	$\underline{2011}$		$\underline{2017}$
QED	11658471.81 (0.02)	\longrightarrow	11658471.90 (0.01) [arxiv:1712.06060]
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. Rev. D 88 (2013) 053055]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]

HLMNT11		KNT18	
LO HVP	$694.91(4.27)$	\longrightarrow	$693.27(2.46)$ this work
NLO HVP	$-9.84(0.07)$	\longrightarrow	$-9.82(0.04)$ this work
NNLO HVP			$1.24(0.01)$ [Phys. Lett. B 734 (2014) 144]
Theory total	$11659182.80(4.94)$	\longrightarrow	$11659182.05(3.56)$ this work
Experiment	$26.1(8.0)$	\longrightarrow	$11659209.10(6.33)$ world avg
Exp - Theory	3.3σ	\longrightarrow	$27.1(7.3)$ this work
Δa_{μ}			3.7σ this work

Alex Keshavarzi's talk at "HVP working group Muon g-2 Theory Initiative" @ KEK LO HVP : error 2.54×10^{-10} [0.37\%]
full covariance matrix will be public soon

KNT18 $a_{\mu}^{\text {SM }}$ update

The BABAR/KLOE discrepancy for $\pi \pi \gamma(\gamma)$

- Other efforts at VEPP-2000 underway
- Design a new independent BABAR analysis
- BABAR and KLOE measurements most precise to date, but in poor agreement
- Others are in between, but not precise enough to decide
- No progress achieved in understanding the reason(s) of the discrepancy
- consequence: accuracy of combined results degraded
- imperative to improve accuracy of prediction (forthcoming g-2 results at FNAL, J-PARC)

Idea : Cross check, combine, and improve by LQCD data

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $K^{2}=-q^{2}>0$
- Vector current 2 pt function

$$
a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right) \quad \Pi^{\mu \nu}(q)=\int d^{4} x e^{i q x}\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle
$$

- Low Q2, or long distance, part of Π (Q2) is relevant for g-2

$\operatorname{Pihat}\left(\mathrm{Q}^{2}\right)$

Simulation details [RBC/UKOCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations
Domain wall fermions: chiral symmetry at finite a
Iwasaki Gauge action (gluons)

- pion mass $m_{\pi}=139.2(2)$ and 139.3(3) $\mathrm{MeV}\left(m_{\pi} L \lesssim 4\right)$
- lattice spacings $a=0.114$ and 0.086 fm
- lattice scale $a^{-1}=1.730$ and 2.359 GeV
- lattice size $L / a=48$ and 64
- lattice volume $(5.476)^{3}$ and $(5.354)^{3} \mathrm{fm}^{3}$

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA) [Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved statistics by more than three orders of magnitudes compared to basic CG, and $\times 10$ smaller memory via multigrid-Lanczos [Lehner 2017] .

Nf=2+1 DWF QCD ensemble at physical quark mass

Euclidean Time Momentum Representation

[Bernecker Meyer 2011 , Feng et al. 2013]
In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$
C(t)=\frac{1}{3} \sum_{x, i}\left\langle j_{i}(x) j_{i}(0)\right\rangle
$$

g-2 HVP contribution is

$$
\begin{gathered}
a_{\mu}^{H V P}=\sum_{t} w(t) C(t) \quad \mathrm{w}(\mathrm{t}) \sim \mathrm{t}^{4} \\
w(t)=2 \int_{0}^{\infty} \frac{d \omega}{\omega} f_{\mathrm{QED}}\left(\omega^{2}\right)\left[\frac{\cos \omega t-1}{\omega^{2}}+\frac{t^{2}}{2}\right]
\end{gathered}
$$

- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{\left(E_{\pi \pi}-m_{\pi}\right) t}$, is improved [Lehner et al. 2015] .
- Corresponding $\hat{\Pi}\left(Q^{2}\right)$ has exponentially small volume error [Portelli et al. 2016] . $w(t)$ includes the continuum QED part of the diagram

DWF light HVP [2016 Christoph Lehner]

120 conf ($\mathrm{a}=0.11 \mathrm{fm}$), 80 conf ($\mathrm{a}=0.086 \mathrm{fm}$) physical point $\mathrm{Nf}=2+1$ Mobius DWF 4D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius D+D) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA more than $\times 1,000$ speed up compared to simple CG

Euclidean time correlation from $e^{+} e^{-} R(s)$ data

From $e^{+} e^{-} R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function $C(t)$ is obtained

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)} \\
C^{\mathrm{R} \text {-ratio }}(t) & =\frac{1}{12 \pi^{2}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \hat{\Pi}\left(\omega^{2}\right)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d s \sqrt{s} R(s) e^{-\sqrt{s} t}
\end{aligned}
$$

- $C(t)$ or $w(t) C(t)$ are directly comparable to Lattice results with the proper limits ($m_{q} \rightarrow m_{q}^{\text {phys }}, a \rightarrow 0, V \rightarrow \infty$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \rightarrow 0$ and/or pQCD)
- R-ratio : short distance has larger error

$\hat{\Pi}\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)}$
($1 / a=1.78 \mathrm{GeV}, \quad$ Relative statistical error)
$\operatorname{Pihat}\left(Q^{2}\right)$

Relative Err of Pihat(Q^{2})

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

- Covariance matrix among energy bin in R-ratio is not available, assumes 100% correlated

Near ρ peak, KLOE and Babar disagree

Careful comparison of R-ratio with lattice results may help

Combine R-ratio and Lattice

- Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

$$
\Theta(t, \mu, \sigma) \equiv[1+\tanh [(t-\mu) / \sigma]] / 210
$$

Continuum limit of $\mathbf{a}^{\mathbf{w}}$

Continuum limit of a_{μ}^{W} from our lattice data; below $t_{0}=0.4 \mathrm{fm}$ and $\Delta=0.15 \mathrm{fm}$

RBC/UKQCD [C. Lehner Lat17]

Continuum extrapolation is mild
c.f BMWc [K. Miura Lat17]

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL) 1
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit, Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly
 (all-to-all propagator with sparse random source)
- First non-zero signal

Sensitive to m_{π}

$$
a_{\mu}^{\mathrm{HVP}}(\mathrm{LO}) \text { DISC }=-9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}
$$

crucial to compute at physical mass

HVP QED+ strong IB corrections

[V. Gulpers's talk]

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections: Qu, Qd, mu-md $\neq 0$
- u,d,s quark mass and lattice spacing are re-tuned using \{charge, neutral\} $\times\{$ pion,kaon\} and (Omega baryon masses)
- For now, V, S, F, M are computed : assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)
- Point-source method : stochastically sample pair of 2 EM vertices a la important sampling with exact photon

(a) V

(c) T
(b) S

(d) D1

(e) D2

(f) F

(g) D3

(a) M
(b) R
(c) O

QED+IB retuning [2017 C. Lehner]

- Use QED $_{\llcorner }$for photon propagator, universal finite volume correction, => -0.57 MeV shift
- 30 conf, $a=0.11 \mathrm{fm}$, AMA per conf : 50×50 sloppy measurements for long distance, 25×25 for short distance.

$$
\Delta m^{F V}=-m_{\pi} \alpha_{\mathrm{QED}}\left(\frac{\kappa}{2 m_{\pi} L}\left(1+\frac{2}{m_{\pi} L}\right)\right)
$$

$$
\begin{aligned}
\Delta m_{u} & =-0.000678(83), \\
\Delta m_{d} & =0.000519(83), \\
\Delta m_{s} & =-0.000431(32), \\
\frac{m_{\text {res }}+m_{l}+\Delta m_{u}}{m_{\text {res }}+m_{l}+\Delta m_{d}} & =0.373(59), \\
\frac{m_{u}^{\mathrm{PDG}}}{m_{d}^{\mathrm{PDG}}} & =0.48(11) .
\end{aligned}
$$

HVP IB+QED corrections

- Strong IB effect (left), EM effect (right)

- Could also compute the difference IB correction of

$$
\mathrm{a}_{\mu}(\mathrm{e}+\mathrm{e}-)-\mathrm{a}_{\mu}(\tau) \sim \mathrm{O}(10) \times 10^{-10}
$$

[M. Bruno's talk]

isospin rotation

R-ratio + Lattice [Christoph Lehner Lat17]

t1 dependence is flat => a consistency between R-ratio and Lattice $\mathrm{t} 1=1.2 \mathrm{fm}$, R-ratio : Lattice $=50: 50$
$\mathrm{t} 1=1.2 \mathrm{fm}$ current error (note 100% correlation in R -ratio) is minimum

HVP Preliminary results [Christoph Lehner et al. 1801.07224]

- Combined R-ratio +Lattice in window [0.4 fm, 1.2 fm] =>error 6.8e-10 [1%]
- central value contributions R-ratio:Lattice = 2:1
- Finite Volume correction 3(3) e-10
- scale error : 0.2% => ~ 3e-10
- valence quark mass, a^{4} error ~ negligible

$a_{\mu}{ }^{\text {ud, conn, isospin }}$	$202.9(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.1)_{\mathrm{V}}(0.2)_{\mathrm{A}}(0.2)_{\mathrm{Z}}$	$649.7(14.2)_{\mathrm{S}}(2.8)_{\mathrm{C}}(3.7)_{\mathrm{V}}(1.5)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(0.1)_{\mathrm{E} 48}(0.1)_{\mathrm{E} 64}$
$a_{\mu}^{\text {s, }}$, conn, isospin	$27.0(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$	$53.2(0.4)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.3)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$
$a_{\mu}^{\mathrm{c}, ~ c o n n, ~ i s o s p i n ~}$	$3.0(0.0)_{\mathrm{S}}(0.1)_{\mathrm{C}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$	$14.3(0.0)_{\mathrm{S}}(0.7)_{\mathrm{C}}(0.1)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$
$a_{\mu}^{\text {uds, disc, isospin }}$	$-1.0(0.1)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}$	$-11.2(3.3)_{\mathrm{S}}(0.4)_{\mathrm{V}}(2.3)_{\mathrm{L}}$
$a_{\mu}{ }^{\text {QED, conn }}$	$0.2(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}$	$5.9(5.7)_{\mathrm{S}}(0.3)_{\mathrm{C}}(1.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.1)_{\mathrm{E}}$
$a_{\mu}{ }_{\text {SIB }} \mathrm{QED}$, disc	$-0.2(0.1)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.0)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}$	$-6.9(2.1)_{\mathrm{S}}(0.4)_{\mathrm{C}}(1.4)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.3)_{\mathrm{E}}$
$a_{\mu}{ }^{\text {SIB }}$	$0.1(0.2)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E} 48}$	$10.6(4.3)_{\mathrm{S}}(0.6)_{\mathrm{C}}(6.6)_{\mathrm{V}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.3)_{\mathrm{E} 48}$
$a_{\mu}{ }^{\text {udsc, isospin }}$	$231.9(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.1)_{\mathrm{V}}(0.3)_{\mathrm{A}}(0.2)_{\mathrm{Z}}(0.0)_{\mathrm{M}}$	$\begin{aligned} & 705.9(14.6)_{\mathrm{S}}(2.9)_{\mathrm{C}}(3.7)_{\mathrm{V}}(1.8)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(2.3)_{\mathrm{L}}(0.1)_{\mathrm{E} 48} \\ & (0.1)_{\mathrm{E} 64}(0.0)_{\mathrm{M}} \end{aligned}$
$\begin{aligned} & a_{\mu}{ }^{\mathrm{QED}, \mathrm{SIB}} \\ & a_{\mu}^{\mathrm{R}-\text { ratio }} \end{aligned}$	$\begin{aligned} & 0.1(0.3)_{\mathrm{S}}(0.0)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.0)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(0.0)_{\mathrm{E}}(0.0)_{\mathrm{E} 48} \\ & 460.4(0.7)_{\mathrm{RST}}(2.1)_{\mathrm{RSY}} \end{aligned}$	$9.5(7.4)_{\mathrm{S}}(0.7)_{\mathrm{C}}(6.9)_{\mathrm{V}}(0.1)_{\mathrm{A}}(0.0)_{\mathrm{Z}}(1.7)_{\mathrm{E}}(1.3)_{\mathrm{E} 48}$
a_{μ}	$\begin{aligned} & 692.5(1.4)_{\mathrm{S}}(0.2)_{\mathrm{C}}(0.2)_{\mathrm{V}}(0.3)_{\mathrm{A}}(0.2)_{\mathrm{Z}}(0.0)_{\mathrm{E}}(0.0)_{\mathrm{E} 48} \\ & (0.0)_{\mathrm{b}}(0.1)_{\mathrm{c}}(0.0)_{\overline{\mathrm{S}}}(0.0)_{\overline{\mathrm{Q}}}(0.0)_{\mathrm{M}}(0.7)_{\mathrm{RST}}(2.1)_{\mathrm{RSY}} \\ & \hline \end{aligned}$	$\begin{gathered} 715.4(16.3)_{\mathrm{S}}(3.0)_{\mathrm{C}}(7.8)_{\mathrm{V}}(1.9)_{\mathrm{A}}(0.4)_{\mathrm{Z}}(1.7)_{\mathrm{E}}(2.3)_{\mathrm{L}} \\ (1.5)_{\mathrm{E} 48}(0.1)_{\mathrm{E} 64}(0.3)_{\mathrm{b}}(0.2)_{\mathrm{c}}(1.1)_{\overline{\mathrm{S}}}(0.3)_{\overline{\mathrm{Q}}}(0.0)_{\mathrm{M}} \\ \hline \end{gathered}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10}. The left column lists results for the window method with $t_{0}=0.4 \mathrm{fm}$ and $t_{1}=1 \mathrm{fm}$. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

[Antonie Geradine's talk]
[Luchang Jin et al.
Phys.Rev. D96 (2017) no.3, 034515
Phys.Rev.Lett. 118 (2017) no.2, 022005]

Hadronic Light-by-Light (HLbL) contributions

HLbL from Models

- Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9-12) x 10^{-10} with $25-40 \%$ uncertainty

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

F. Jegerlehner, x 10^{11}

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	105 ± 26	116 ± 39

Coordinate space Point photon method

```
[ Luchang Jin et all., PRD93, 014503 (2016) ]
```

- Treat all 3 photon propagators exactly (3 analytical photons) , which makes the quark loop and the lepton line connected :
disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x, y, z and $x_{o p}$ is summed over space-time exactly

- Short separations, Min[$|x-z|,|y-z|,|x-y|]<R \sim O(0.5)$ fm, which has a large contribution due to confinement, are summed for all pairs
- longer separations, Min $[|x-z|,|y-z|,|x-y|]>=R$, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

HLbL point source method [L. Jin et al. 1510.07100]

- Anomalous magnetic moment, $F_{2}\left(q^{2}\right)$ at $q^{2} \rightarrow 0$ limit

$$
\frac{F_{2}^{\mathrm{cHLbL}}\left(q^{2}=0\right)}{m} \frac{\left(\sigma_{s^{\prime}, s}\right)_{i}}{2}=\frac{\sum_{x, y, z, x_{\mathrm{op}}}}{2 V T} \epsilon_{i, j, k}\left(x_{\mathrm{op}}-x_{\mathrm{ref}}\right)_{j} \cdot i \bar{u}_{s^{\prime}}(\overrightarrow{0}) \mathcal{F}_{k}^{C}\left(x, y, z, x_{\mathrm{op}}\right) u_{s}(\overrightarrow{0})
$$

- Stochastic sampling of x and y point pairs. Sum over x and z.

$$
\mathcal{F}_{\nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)=(-i e)^{6} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)
$$

Conserved current \& moment method

- [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

- [moment method, $\mathrm{q} 2 \rightarrow 0$] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, $q->0$ limit value is directly computed via the first moment of the relative coordinate, $\mathrm{xop}-(\mathrm{x}+\mathrm{y}) / 2$, one could show

$$
\left.\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})\right|_{\vec{q}=0}=i \sum_{x, y, z, x_{\mathrm{op}}}\left(x_{\mathrm{op}}-(x+y) / 2\right)_{i} \times
$$

to directly get $\mathrm{F}_{2}(0)$ without extrapolation.

$$
\text { Form factor : } \Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)
$$

HVP

Current conservation \& subtractions

- conservation => transverse tensor

$$
\Pi^{\mu \nu}(q)=\left(\hat{q}^{2} \delta^{\mu \nu}-\hat{q}^{\mu} \hat{q}^{\nu}\right) \Pi\left(\hat{q}^{2}\right)
$$

- In infinite volume, $\mathrm{q}=0, \Pi_{\mu \nu}(\mathrm{q})=0$
- For finite volume, $\Pi_{\mu \nu}(0)$ is exponentially small (L.Jin, use also in HLbL)

$$
\begin{aligned}
& \int_{V} d x^{4}\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle=\int_{V} d x^{4} \partial_{x}\left(x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle\right) \\
= & \int_{\partial V} d x^{3} x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle \propto L^{4} \exp (-M L / 2) \rightarrow 0
\end{aligned}
$$

- e.g. DWF $\mathrm{L}=2,3,5 \mathrm{fm} \quad \Pi_{\mu \nu}(0)=8(3) \mathrm{e}-4,2(13) \mathrm{e}-5,-1(5) \mathrm{e}-8$
- Subtract $\Pi_{\mu \nu}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick [Bernecker \& Meyer, Maintz] :
$\Pi^{\mu \nu}(q)-\Pi^{\mu \nu}(0)=\int d^{4} x\left(e^{i q x}-1\right)\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle$

cHLbL Subtraction using current conservation

- From current conservation, $\partial_{\rho} V_{\rho}(x)=0$, and mass gap, $\left\langle x V_{\rho}(x) \mathcal{O}(0)\right\rangle \sim$ $|x|^{n} \exp \left(-m_{\pi}|x|\right)$

$$
\begin{aligned}
& \sum_{x} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)=\sum_{x}\left\langle V_{\rho}(x) V_{\sigma}(y) V_{\kappa}(z) V_{\nu}\left(x_{\mathrm{op}}\right)\right\rangle=0 \\
& \sum_{z} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)=0
\end{aligned}
$$

at $V \rightarrow \infty$ and $a \rightarrow 0$ limit (we use local currents).

- We could further change QED weight
$\mathfrak{G}_{\rho, \sigma, \kappa}^{(2)}(x, y, z)=\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, y)+\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, y)$
without changing sum $\sum_{x, y, z} \mathfrak{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$.
- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(z, z, x)=\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(y, z, z)=0$, so short distance $\mathcal{O}\left(a^{2}\right)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x, y, z) is represented by 5 parameters, compute on N^{5} grid points and interpolates. ($|x-y|<11 \mathrm{fm}$).

Dramatic Improvement ! Luchang Jin

$a=0.11 \mathrm{fm}, 24^{3} \times 64(2.7 \mathrm{fm})^{3}$,
$\mathrm{m}_{\pi}=329 \mathrm{MeV}, \quad \mathrm{m}_{\mu}=\sim 190 \mathrm{MeV}, \mathrm{e}=1$

$$
\begin{array}{r}
q=2 \pi / L N_{\text {prop }}=81000 \longmapsto \\
q=0 N_{\text {prop }}=26568 \longmapsto \ddots
\end{array}
$$

SU(3) hierarchies for d-HLbL

- At $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{ud}}$ limit, following type of disconnected HLbL diagrams survive $Q_{u}+Q_{d}+Q_{s}=0$
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by

$$
O\left(m_{s}-m_{u d}\right) / 3 \quad \text { and } \quad O\left(\left(m_{s}-m_{u d}\right)^{2}\right)
$$

Disconnected calculation

- We can use two point source photons at y and z, which are chosen randomly. The points x_{op} and x are summed over exactly on lattice.
- Only point source quark propagators are needed. We compute M point source propagators and all M^{2} combinations of them are used to perform the stochastic sum over $r=z-y$.

$$
\begin{align*}
\mathcal{F}_{\nu}^{D}\left(x, y, z, x_{\mathrm{op}}\right) & =(-i e)^{6} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{D}\left(x, y, z, x_{\mathrm{op}}\right) \tag{13}\\
\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{D}\left(x, y, z, x_{\mathrm{op}}\right) & =\left\langle\frac{1}{2} \Pi_{\nu, \kappa}\left(x_{\mathrm{op}}, z\right)\left[\Pi_{\rho, \sigma}(x, y)-\Pi_{\rho, \sigma}^{\mathrm{avg}}(x-y)\right]\right\rangle_{\mathrm{QCD}} \tag{14}\\
\Pi_{\rho, \sigma}(x, y) & =-\sum_{q}\left(e_{q} / e\right)^{2} \operatorname{Tr}\left[\gamma_{\rho} S_{q}(x, y) \gamma_{\sigma} S_{q}(y, x)\right] \tag{15}
\end{align*}
$$

Disconnected claculation

$$
\begin{align*}
& \frac{F_{2}^{\mathrm{dHLbL}}(0)}{m} \frac{\left(\sigma_{s^{\prime}, s}\right)_{i}}{2}=\sum_{r, x} \sum_{x_{\mathrm{op}}} \frac{1}{2} \epsilon_{i, j, k}\left(\tilde{x}_{\mathrm{op}}\right)_{j} \cdot i \bar{u}_{s^{\prime}}(\overrightarrow{0}) \mathcal{F}_{k}^{D}\left(x, y=r, z=0, x_{\mathrm{op}}\right) u_{s}(\overrightarrow{0}) \\
& \sum_{\mathcal{H}_{\rho, ~}^{D}}^{D} \frac{1}{2} \epsilon_{i, j, k}\left(x_{\mathrm{op}}\right)_{j}\left\langle\Pi_{\rho, \sigma}\left(x_{\mathrm{op}}, 0\right)\right\rangle_{\mathrm{QCD}}=\sum_{x_{\mathrm{op}}} \frac{1}{2} \epsilon_{i, j, k}\left(-x_{\mathrm{op}}\right)_{j}\left\langle\Pi_{\rho, \sigma}\left(-x_{\mathrm{op}}, 0\right)\right\rangle_{\mathrm{QCD}}=0 \tag{16}
\end{align*}
$$

- Because of the parity symmetry, the expectation value for the left loop average to zero.
- $\left[\Pi_{\rho, \sigma}(x, y)-\Pi_{\rho, \sigma}^{\operatorname{avg}}(x-y)\right]$ is only a noise reduction technique. $\Pi_{\rho, \sigma}^{\text {avg }}(x-y)$ should remain constant through out the entire calculation.

M^{2} trick

- For QED_{L}, we can compute the QED function for all z given the y location fixed and x summed over. Allow us to compute all combination of y, z with little efforts.
- For QED_{∞}, although we can compute all the function $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$ simply by interpolate, we cannot easily compute this function (even after fixing y) for all x and z, simply because of its cost is proportion to Volume ${ }^{2}$.
- However, we with QED_{∞} and interpolation, we can freely choose which coordinates we compute. For example, we may compute all z for $|x-y| \leqslant 5$, and sample z for $|x-y|>5$.

140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

- left: connected, right : leading disconnected

- Using AMA with 2,000 zMobius low modes, AMA
(statistical error only)

$$
\begin{aligned}
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{cHLbL}} & =(0.0926 \pm 0.0077) \times\left(\frac{\alpha}{\pi}\right)^{3}=(11.60 \pm 0.96) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{dHLbL}} & =(-0.0498 \pm 0.0064) \times\left(\frac{\alpha}{\pi}\right)^{3}=(-6.25 \pm 0.80) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{HLbL}} & =(0.0427 \pm 0.0108) \times\left(\frac{\alpha}{\pi}\right)^{3}=(5.35 \pm 1.35) \times 10^{-10}
\end{aligned}
$$

Updates from PRL (2017)
 [Tom Blum, c. Lehner, TI, Luchang Jin]

- Discretization error
\rightarrow a scaling study for $1 / \mathrm{a}=2.7 \mathrm{GeV}, 64$ cube lattice at physical quark mass for both connected and disconnected is proposed to ALCC at Argonne [Tom Blum Lat17]
- Finite volume

Using Infinite Volume and continuum lepton + photon diagrams using L~5, 6, 10 fm box
[C.Lehner Uconn g-2 Theory Initiative] [TI Lat17]

Nf=2+1 DWF QCD ensemble at physical quark mass

cHLbL Different lattice spacings

cHLbL: lattice spacing effect (pretiminar)

$1 / \mathrm{a}=2.37 \mathrm{GeV}, 1.73 \mathrm{GeV}, 1.0 \mathrm{GeV}$

- Add new $24^{3}, 1 \mathrm{GeV}$, ID ensemble (green)
- I and ID slightly different, but disc. errors similar
- Collecting more statistics (9 configs)
- Significant increase as $a \rightarrow 0$

dHLbL Different lattice spacings

dHLbL contribution: lattice spacing effect (preiliniara)

- Large negative increase tends to cancel connected one
- Collecting more statistics!

Remaining dHLbL

- These are the subleading disconnected diagrams in the $\operatorname{SU}(3)$ limit.
- The right diagram has a factor of $1 / 3$ suppression from the multiplicity of the diagram compare with the left diagram, i.e. the external photon is more likely to be on the loop with three photons.
- For the left diagram, the moment method works just like the connected case. With both QED_{L} or QED_{∞}, we can sample x, y and sum over z. We can use the M^{2} trick for the x, y sampling. Low-modes-averaging for the loop with z.
- For the right diagram, The moment method still works, however, we have to use a point on the other loop as the reference point, which may be more noisy. But as mentioned above, the right diagram is more suppressed.

Infinite Volume Photon and Lepton QED $_{\infty}$

[Feynman, Schwinger, Tomonaga]
[Mainz]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$.
- Hadron part $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$ has following features due to the mass gap :
\triangleright For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{o p}\right) \sim \exp \left[-m_{\pi} \times \operatorname{dist}\left(x, y, z, x_{o p}\right)\right]$
\triangleright For fixed ($x, y, z, x_{\text {op }}$), FV error (wraparound effect etc.) is exponentially suppressed: $\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{V}-\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{\infty} \sim \exp \left[-m_{\pi} \times L\right]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$
\left.\Delta_{V}\left[\sum_{x, y, z, x_{\mathrm{op}}} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)\right]\right] \sim \exp \left[-m_{\pi} L\right]
$$

$\left(x_{\text {ref }}=(x+y) / 2\right.$ is at middle of QCD box using transnational invariance $)$

Preliminary results, QCD case

- QCD case with physical point quark mass,
- $48^{3} \times 96$ lattice, with $a^{-1}=1.73 \mathrm{GeV}, m_{\pi}=139 \mathrm{MeV}, m_{\mu}=106 \mathrm{MeV}$.

- c.f. QED_{L} case, $\left.\frac{g_{\mu}-2}{2}\right|_{\text {cHLbL }}=(0.0926 \pm 0.0077)\left(\frac{\alpha}{\pi}\right)^{3}$

Discretization error \& QED_L FV error summary (preliminary)

HLbL (near) future plans

- c-HLbL, Leading d-HLbL :
- Finalize

QED_L Statistical, FV, discretization analysis

- Same for QED_Inf (Noisier)
- Higher order d-HLbL
- Comparing with Long distance LQCD calculation with Model/dispersive Hadron contributions (pi0 exchange, ...), and perhaps combine LQCD+Model/dispersive

Summary

- Lattice calculation for g-2 calculation is improved very rapidly
- HVP [Christoph Lehner et al.]
- New methods using low mode for connected at physical quark mass,
- disconnected quark loop at physical quark mass,
- Combining with R-ratio experiment data for cross-check and improvement => 1\% error
- Eventually the window will be enlarged for a pure LQCD prediction
- QED and IB studies are included. [V. Gulper's talk]
- Long distance 2 pi contribution from a separate analysis (distillation, GEVP) [A. Meyer et al]
- Tau input for g-2 and Lattice interplay [M. Bruno's talk]
- HLbL [Luchang Jin et al]
- computing leading disconnected diagrams :
-> 8% stat error in connected, 13% stat error in leading disconnected
- coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), config-by-config conserved external current
- take moment of relative coordinate to directly take $\mathrm{q} \rightarrow 0$
- AMA, zMobius, 2000 low modes
- Infinite volume / continuum QED weight function to avoid power-like FV
- Goal : HVP sub 1% (then 0.25%), HLbL 10\% error

Can we see the next physics Revolution (c.f GW) ?

[Eigo Shintani Lat17]

Studies of finite volume

- ChPT

Aubin et al., PRD93(2016)
> Lowest-order SChPT gives VPF tensor: $\Pi_{\mu v}(\mathrm{q})$
$>10 \%--15 \%$ discrepancy between $a_{\mu}{ }^{\mathrm{HLO}}\left[\mathrm{A}_{I}\right]$ and $a_{\mu}{ }^{\mathrm{HLO}}\left[\mathrm{A}_{1}{ }^{44}\right]$ consistent with lattice calculation ($\mathrm{L}=3.8 \mathrm{fm}, 0.22 \mathrm{GeV}$ pion, $\mathrm{m}_{\pi} \mathrm{L}=4.2$)

- Gounaris-Sakurai model

Wittig (2016,2017), Mainz I705.01775
> By using time-like pion form factor, g -2 can be described in infinite volume.
$>3 \% \mathrm{FV}$ effect in $\mathrm{L}=4 \mathrm{fm}, 0.19 \mathrm{GeV}$ pion, $\mathrm{m}_{\pi} \mathrm{L}=4$

- Anisotropic study Lehner (2016)
$>$ Coordinate space integral along temporal or spatial direction.
\Rightarrow Discrepancy is $a_{\mu}{ }^{\text {HLO }}$ [spatial] $-a_{\mu}{ }^{\text {HLO }}$ [temporal] $\sim 3 \%$.
- Direct lattice study (PACS)
$>$ Comparison between two volumes in physical pion at fixed a
$>L>5 \mathrm{fm}, \mathrm{m}_{\pi} \mathrm{L} \gtrsim 3.8$
$>$ Compare the different boundary

[Eigo Shintani Lat17]

PACS 96^{4} and 64^{4} at $a=0.08 \mathrm{fm}$

PACS group recently generates two gauge ensembles:
> Nf=2+l O(a) improved clover fermion + Stout smearing
> $\mathrm{a}=0.083 \mathrm{fm}$, and two lattice sizes 64^{4} and 96^{4}
> (almost) physical pion,
$\mathrm{L}=5.4 \mathrm{fm}, 0.140 \mathrm{GeV}\left(\mathrm{m}_{\pi} \mathrm{L}=3.8\right)$, with $K_{u d}=0.126117, K_{\mathrm{s}}=0.124790$
$\mathrm{L}=8.1 \mathrm{fm}, 0.145 \mathrm{GeV}\left(\mathrm{m}_{\pi} \mathrm{L}=6.0\right)$
with $K_{u d}=0.126117, K_{s}=0.124902$

~5 MeV difference in pion mass

- Slightly negative for $\mathrm{t}_{\max }>1.3 \mathrm{fm} \rightarrow \Delta_{\mathrm{FV}}[(\mathrm{L} / \mathrm{a}=96)-(\mathrm{L} / \mathrm{a}=64)] \sim-10$, opposite sign from expectation (ChPT etc) Aubin et al., PRD93(2016)
However pion mass difference, $m_{\pi}[(L / a=96)-(L / a=64)]=+5 \mathrm{MeV}$, due to slightly different K_{s} in two ensembles. For same m_{π} such a difference would have been reduced by $\Delta \mathrm{a}_{\mu}=+3$ under assumption from ansatz in HPQCD(2016), Mainz (2017) \Rightarrow conservatively $\sim \pm 2(2) \% \mathrm{FV}$ correction in $\mathrm{L} / \mathrm{a}=64$ lattice at finite $\mathrm{t}_{\max } \sim 2.5 \mathrm{fm}$ including mass correction.

CKM V ${ }_{\text {us }}$ from Inclusive tau decay

Yet another by-product of muon g-2 HVP

[Hiroshi Ohki et al. arXiv:1803.07228]

Tau decay

$$
\begin{aligned}
R_{i j} & =\frac{\Gamma\left(\tau^{-} \rightarrow \text { hadrons }_{i j} \nu_{\tau}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)} \\
& =\frac{12 \pi\left|V_{i j}\right|^{2} S_{E W}}{m_{\tau}^{2}} \int_{0}^{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right) \underbrace{\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im}^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s)\right]}_{\equiv \operatorname{Im} \Pi(s)}
\end{aligned}
$$

- Lattice side : The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) currentcurrent two point

$$
\begin{aligned}
\Pi_{i j ; V / A}^{\mu \nu}\left(q^{2}\right) & =i \int d^{4} x e^{i q x}\langle 0| T J_{i j ; V / A}^{\mu}(x) J_{i j ; V / A}^{\dagger \mu}(0)|0\rangle \\
& =\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{i j ; V / A}^{(1)}\left(q^{2}\right)+q^{\mu} q^{\nu} \Pi_{i j ; V / A}^{(0)}
\end{aligned}
$$

Finite Energy Sum Rule (FESR)

[Shifman, Vainshtein, and Zakharov ' 79]
The finite energy sum rule (FESR)

$$
\int_{0}^{s_{0}} \omega(s) \rho(s) d s=-\frac{1}{2 \pi i} \oint_{|s|=s_{0}} \omega(s) \Pi(s) d s, \quad\left(s_{0}: \text { finite energy }\right)
$$

$w(s)$ is an arbitrary regular function such as polynomial in s.

- LHS : spectral function $\rho(\mathrm{s})$ is related to the experimental τ inclusive decays

$$
\begin{aligned}
& \quad \frac{d R_{u s ; V / A}}{d s}=\frac{12 \pi^{2}\left|V_{u s}\right|^{2} S_{E W}}{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{1}(s)+\operatorname{Im} \Pi^{0}(s)\right] \\
& \tilde{\rho}(s) \equiv\left|V_{u s}\right|^{2}\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{1}(s)+\operatorname{Im} \Pi^{0}(s)\right] \\
& \text { - RHS } \cdots \text { Analytic calculation } \\
& \quad \text { with perturbative QCD (pQCD) and OPE }
\end{aligned}
$$

K_{13}, PDG 2016
0.2237 ± 0.0010
K_{12}, PDG 2016
0.2254 ± 0.0007
CKM unitarity, PDG 2016
0.2258 ± 0.0009
$\tau \rightarrow$ s incl., HFLAV Spring 2017
0.2186 ± 0.0021
$\tau \rightarrow K v / \tau \rightarrow \pi v$, HFLAV Spring 2017
0.2236 ± 0.0018
τ average, HFLAV Spring 2017
0.2216 ± 0.0015
HFLAV
Spring 2017

- τ result v.s. non- τ result : more than 3σ deviation : IVusi puzzle
- new physics effect?
- incl. analysis uses Finite energy sum rule (FESR)
- pQCD and higher order OPE for FESR:
underestimation of truncation error and/or non-perturbative effects? (c.f. alternative FESR approach, R. Hudspith et. al arXiv:1702.01767)

Our new method : Combining FESR and Lattice

- If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s=-Q_{k}^{2}<0$, we could extend the FESR with weight function $w(s)$ to have poles there,

$$
\begin{array}{r}
\int_{s_{t h}}^{\infty} w(s) \operatorname{Im} \Pi(s)=\pi \sum_{k}^{N_{p}} \operatorname{Res}_{k}[w(s) \Pi(s)]_{s=-Q_{k}^{2}} \\
\Pi(s)=\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s) \propto s \quad(|s| \rightarrow \infty)
\end{array}
$$

- For $N_{p} \geq 3$, the $|s| \rightarrow \infty$ circle integral vanishes.

weight function $w(s)$

- Choice of weight function

$$
\begin{array}{r}
w(s)=\prod_{k}^{N_{p}} \frac{1}{\left(s+Q_{k}^{2}\right)}=\sum_{k} a_{k} \frac{1}{s+Q_{k}^{2}}, \quad a_{k}=\sum_{j \neq k} \frac{1}{Q_{k}^{2}-Q_{j}^{2}} \\
\Longrightarrow \sum_{k}\left(Q_{k}\right)^{M} a_{k}=0 \quad\left(M=0,1, \cdots, N_{p}-2\right)
\end{array}
$$

- The residue constraints automatically subtracts $\Pi^{(0,1)}(0)$ and $s \Pi^{(1)}(0)$ terms.
- For experimental data, $w(s) \sim 1 / s^{n}, n \geq 3$ suppresses
\triangleright larger error from higher multiplicity final states at larger $s<m_{\tau}^{2}$
\triangleright uncertanties due to pQCD+OPE at $m_{\tau}^{2}<s$
- For lattice, Q_{k}^{2} should be not too small to avoid large stat. error, $Q^{2} \rightarrow 0$ extrapolation, Finite Volume error. Also not too larger than m_{τ}^{2} to make the suppression in time-like, higher energy, higher multiplicity, region enhanced.
- Comparison of different C, N values provides a self-consistency check for reliable error.

τ inclusive decay experiments

$$
\tilde{\rho}(s) \equiv\left|V_{u s}\right|^{2}\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{1}(s)+\operatorname{Im} \Pi^{0}(s)\right]
$$

To compare with experiments, a conventional value of \mid Vus| $=0.2253$ is used

For K pole, we assume a delta function form $\gamma_{K} \omega\left(m_{K}^{2}\right)$
$\gamma_{K} \sim 2\left|V_{u s}\right|^{2} f_{K}^{2} \quad$ obtained from either experimental value of $\mathrm{K} \rightarrow \mu$ or $\tau \rightarrow \mathrm{k}$ decay width.

$$
\begin{aligned}
\gamma_{K}\left[\tau \rightarrow K \nu_{\tau}\right] & =0.0012061(167)_{\exp }(13)_{I B} \text { [HFAG16] } \\
\gamma_{K}\left[K_{\mu 2}\right] & =0.0012347(29)_{e x p}(22)_{I B} \text { [PDG16] }
\end{aligned}
$$

- example: $\mathrm{N}=3,\left\{Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}\right\}=\{0.1,0.2,0.3\}\left[\mathrm{GeV}^{2}\right]$

- example: $\mathrm{N}=4,\left\{Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}, Q_{4}^{2}\right\}=\{0.1,0.2,0.3,0.4\}\left[\mathrm{GeV}^{2}\right]$

- example: $\mathrm{N}=5,\left\{Q_{1}^{2}, Q_{2}^{2}, Q_{3}^{2}, Q_{4}^{2}, Q_{5}^{2}\right\}=\{0.1,0.2,0.3,0.4,0.5\}\left[\mathrm{GeV}^{2}\right]$

QCD ensemble and statistics

- Main analysis is on two ensemble, at almost physical quark masses ($M_{\pi} \approx 140 \mathrm{MeV}$, $\left.M_{K} \approx 499 \mathrm{MeV}\right), \mathrm{V}=(5 \mathrm{fm})^{3}$.
- Correct the residual up and strange quark mass error by partially quenched calculation.
- Consistent with other heavier / smaller ensemble are used to estimate size and direction of discretization errors.

Vol	$a^{-1}[\mathrm{GeV}]$	$M_{\pi}[\mathrm{MeV}]$	$M_{K}[\mathrm{MeV}]$	conf
$48^{3} \times 96$	$1.7295(38)$	139	499	88
		135	496	5 (PQ-correction)
$64^{3} \times 128$	$2.359(7)$	139	508	80
		135	496	5 (PQ-correction)

Tuning of the "inclusiveness" of experimental spectral integral

$K, K \pi$ dominates spectral integrals,
high multiplicity modes and $\operatorname{pQCD}\left(s>m_{\tau}^{2}\right)$ strongly suppressed

Lattice residue contributions

Ratios of each contribution of V / A with spin=0, 1 to the total residue (Lattice) $A^{(0)}$ dominance (K-pole)

IVusl from inclusive decays

- 4 channels: Vector or Axial (V or A), spin 0 and 1
- A0 channel is dominated by K pole.
\rightarrow For the K pole contribution we use

$$
f_{K}^{\text {phys }}=0.15551(83)[\mathrm{GeV}][\mathrm{RBC} / \mathrm{UKQCD}, 2014] \text { instead of } A^{(0)}
$$

- Other channels :

A1, V1, V0 (\& residual A0) \rightarrow multi hadron states \& pQCD ("other")

- We take the continuum limit using the data $\mathrm{L}=48$ and 64

$$
V_{1}+V_{0}+A_{1}+A_{0}:\left|V_{u s}^{V_{1}+V_{0}+A_{1}+A_{0}}\right|=\sqrt{\frac{\rho_{\text {exp }}^{\text {K-pole }}+\rho_{e x p}^{\text {others }}}{\left(f_{K}^{\text {phys }}\right)^{2} \omega\left(m_{K}^{2}\right)+F_{\text {lat }}\left(\Pi_{\text {others }}\right)-\rho_{\mathrm{pQCD}}}},
$$

$$
\begin{aligned}
& \rho_{\text {exp }}^{\text {others }}=\left|V_{u s}\right|^{2} \int_{s_{t h}}^{m_{\tau}^{2}} d s \omega(s) \operatorname{Im} \Pi(\mathrm{s}) \quad \rho_{p Q C D}=\int_{m_{\tau}^{2}}^{\infty} d s \omega(s) \Pi_{O P E}(s) \\
& F_{\text {lat }}=\sum_{k=1}^{N} \operatorname{Res}\left(\omega\left(-\mathrm{Q}_{\mathrm{k}}^{2}\right)\right) \Pi_{\mathrm{lat}}\left(-\mathrm{Q}_{\mathrm{k}}^{2}\right)
\end{aligned}
$$

Systematic error estimate

- Higher order (a^{4}) discretization error for $\mathrm{V} 1+\mathrm{V} 0+\mathrm{A} 1+($ residual A 0$)$

$$
\mathcal{O}\left(C^{2} a^{4}\right) \sim 0.1 C a^{2}, \quad\left(a^{-1}=2.37[\mathrm{GeV}]\right)
$$

Two lattice ensembles yield (less than) 10\% difference
\rightarrow We estimate 10% reduction of $\mathrm{O}\left(a^{4}\right)$ relative to $\mathrm{O}\left(a^{2}\right)$

- Finite volume correction

1 loop ChPT analysis of current-current correlation function on finite volume for $K \pi$ channel (V1).

- Isospin breaking effects
s-dependent strong isospin breaking corrected $K \pi$ experimental data used.
Theory error for dominant $K \pi$ channels: 0.2% for electromagnetic effects and $\sim 1 \%$ strong isospin breaking effect on V1. [Ref: Antonelli, et al., JHEP10(2013)070]
- pQCD (OPE) uncertainty
2% for possible quark hadron duality-violation effect
$\left|V_{u s}\right|$ systematic error of lattice residue contributions

$$
\left(N=4, \Delta=0.067 \mathrm{GeV}^{2}\right)
$$

For small C, statistical error dominates.
For large C, discretization error becomes large.
We obtain optimal inclusive determinations around $\mathrm{C}=0.7$.

Lattice Inclusive $\left|V_{u s}\right|$ determinations

Theory and experimental errors are included.
The result is stable against changes of C and N .

$$
N=4, C=0.7\left[\mathrm{GeV}^{2}\right]:\left|V_{u s}\right|=0.2228(15)_{\exp }(13)_{t h} \quad(0.87 \% \text { total error })
$$

Comparison to $\left|V_{u s}\right|$ from others

All our results $(\mathrm{C}<1, \mathrm{~N}=3,4,5)$ are consistent with each other within 1σ error, as well as to CKM unitarity.

Infinite Volume Photon and Lepton QED $_{\infty}$

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$.
- Hadron part $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$ has following features due to the mass gap :
\triangleright For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{o p}\right) \sim \exp \left[-m_{\pi} \times \operatorname{dist}\left(x, y, z, x_{o p}\right)\right]$
\triangleright For fixed $\left(x, y, z, x_{\text {op }}\right)$, FV error (wraparound effect etc.) is exponentially suppressed: $\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{V}-\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{\infty} \sim \exp \left[-m_{\pi} \times L\right]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$
\left.\Delta_{V}\left[\sum_{x, y, z, x_{\mathrm{op}}} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)\right]\right] \sim \exp \left[-m_{\pi} L\right]
$$

$\left(x_{\text {ref }}=(x+y) / 2\right.$ is at middle of QCD box using transnational invariance $)$

Preliminary results, QCD case

- QCD case with physical point quark mass,
- $48^{3} \times 96$ lattice, with $a^{-1}=1.73 \mathrm{GeV}, m_{\pi}=139 \mathrm{MeV}, m_{\mu}=106 \mathrm{MeV}$.

- c.f. QED_{L} case, $\left.\frac{g_{\mu}-2}{2}\right|_{\text {cHLbL }}=(0.0926 \pm 0.0077)\left(\frac{\alpha}{\pi}\right)^{3}$

Dispersive + Lattice

- There are wide variety of application for dispersive analysis using both inclusive decay data (real world!) + non-perturbative Lattice QCD
- Quark hadron duality-violation is suppressed by non-perturbative LQCD
- Lattice point of view : good use of non-plateau region data, which otherwise is wasted!
- Other interesting applications :
- Total decay and transition rate [Daniel Robaina Lat17] [Max Hansen Lat17]
- B meson inclusive semileptonic decay
[JLQCD, Shoji Hashimoto Lat17]
- Nucleon deep in elastic scattering and Parton Distribution
[QCDSF, Ross Young Lat17]
Must be many more interesting applications

source operator independence

	$N N\left({ }^{1} S_{0}\right)$				$N N\left({ }^{3} S_{1}\right)$			
Data	Operator	Sanity check			Operator independence	Sanity check		
	independence	(i)	(ii)	(iii)		(i)	(ii)	(iii)
YIKU2012	No	\dagger	No		No	\dagger	No	

[Max Hansen Lat17]

Total rates from LQCD via Backus-Gilbert

Begin with a four-point function designed to give a particular spectral decomposition

$$
\left.G(\tau)=\sum_{n}|\langle n, L| \mathcal{J}| N\right\rangle\left.\right|^{2} e^{-E_{n}(L) \tau}
$$

Apply the Backus-Gilbert method to the inverse Laplace problem

$$
G(\tau)=\int_{0}^{\infty} \frac{d \omega}{2 \pi} \rho(\omega, L) \longrightarrow \text { Backus-Gilbert } \widehat{\rho}(\bar{\omega}, L, \Delta)=\int d \omega \delta_{\Delta}(\bar{\omega}, \omega) \rho(\omega, L)
$$

Estimate the ordered double limit to extract total transition rates
$\rho(\omega)=\lim _{\Delta \rightarrow 0} \lim _{L \rightarrow \infty} \widehat{\rho}(\omega, L, \Delta) \longrightarrow$ Total decay and transition rates

e.g. $\Gamma_{B \rightarrow s}=\frac{\rho_{B \rightarrow s}\left(M_{B}\right)}{2 M_{B}}$

Analytic structure of Compton amplitude

Decay amplitude: $\quad|\mathcal{M}|^{2}=\left|V_{q Q}\right|^{2} G_{F}^{2} M_{B} l^{\mu \nu} W_{\mu \nu} \quad$ (function of $\mathrm{v} \cdot \mathrm{q}$ and q^{2})
Structure function:

$$
\begin{aligned}
& W_{\mu \nu}=\sum_{X}(2 \pi)^{3} \delta^{4}\left(p_{B}-q-p_{X}\right) \frac{1}{2 M_{B}}\left\langle B\left(p_{B}\right)\right| J_{\mu}^{\dagger}(0)|X\rangle\langle X| J_{\nu}(0)\left|B\left(p_{B}\right)\right\rangle
\end{aligned}
$$

Matrix element:
calculable on the lattice in the unphysical kinematical regime

$$
T_{\mu \nu}=i \int d^{4} x e^{-i q x} \frac{1}{2 M_{B}}\left\langle B \mid T\left\{J_{\mu}^{\dagger}(x) J_{\nu}(0)\right\} B\right\rangle
$$

Future plans

- HVP : complete QED and Isospin study, improve, tau
- HVP: FV error study on ~ $(10 \mathrm{fm})^{3}$ box
- HLbL: (discretization error) Nf=2+1 DWF/ Mobius ensemble at physical point, $L=5.5 \mathrm{fm}, \mathrm{a}=0.083 \mathrm{fm},(64)^{3}$ at Mira, ALCC @Argonne started to run
- HLbL: FV error study on $\sim(10 \mathrm{fm})^{3}$ box
- HLbL: Subleading Disconnected diagrams

Backup slides

1. Introduction Lattice works

[Slide from Eigo Shintani]

Approaches to determination of IVusl from inclusive τ decays

Method	pQCD (OPE)	issues	Precision limit for IVusl
Conventional FESR	higher order OPE: vacuum saturation approximation	inconsistent OPE treatment ([Ref.HLMZ 17]) large contributions from high-s region contribution	$3+\sigma$ discrepancy from CKM unitarity (uncontrolled QCD systematic errors?)
Alternative FESR [HLMZ 17]	higher order OPE: fit by experimental data, checked with lattice QCD data	large contributions from high-s region	dominant high multiplicity experimental data (residual modes : 25% error to the total contribution) [1.1\% total error]
Our method (lattice-based inclusive analysis)	systematically suppre via first principle la	ed uncertainties ice QCD data	currently lattice and experimental errors are comparable (<1\%) pQCD error is negligible. [0.87 \% total error]

QCD box in QED box

- FV from quark is exponentially suppressed $\sim \exp \left(-M_{\pi} L_{Q C D}\right)$
- Dominant FV effects would be from photon
- Let photon and muon propagate in larger (or infinite) box than that of quark

- We could examine different lepton/photon in the off-line manner e.g. QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging [Lehner TI LATTICE14] or
Infinite Vol. Photon propagators [C. Lehner, L.Jin, TI LATTICE15] [Maintz group, LATTICE16]

Hadronic Light-by-Light

- 4pt function of EM currents
- No direct experimental data available
- Dispersive approach

$$
\left.\begin{array}{rl}
\Gamma_{\mu}^{(\text {Hul })}\left(p_{2}, p_{1}\right)= & i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
& \times \gamma_{\nu} S^{(\mu)}\left(\not p_{2}+k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(p_{1}+\not k_{1}\right) \gamma_{\sigma} \rightarrow
\end{array} \rightarrow\right\}
$$

Form factor: $\Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)$

Our Basic strategy : Lattice QCD+QED system

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function $\pi^{(4)}$ which is sampled in lattice QCD with chiral quark (Domain-Wall fermion)
- Photon \& lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for given loop momenta [L. Jin et al 2015] (no noise from QED+lepton).

$$
\begin{gathered}
\Gamma_{\mu}^{(\mathrm{Hlbl})}\left(p_{2}, p_{1}\right)=i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{2}, k_{3}\right) \\
\times\left[S\left(p_{2}\right) \gamma_{\nu} S\left(p_{2}+k_{2}\right) \gamma_{\rho} S\left(p_{1}+k_{1}\right) \gamma_{\sigma} S\left(p_{1}\right)+(\text { perm. })\right]
\end{gathered}
$$

- set spacial momentum for
- external EM vertex q
- in- and out- muon p, p^{\prime}

$$
q=p-p^{\prime}
$$

- set time slice of muon source $(t=0)$, $\operatorname{sink}\left(\mathrm{t}^{\prime}\right)$ and operator (t_{op})
- take large time separation for ground state matrix element

QCD+QED method [Blum et al 2015]

- One photon is treated analytically
- other two sampled stochastically
- needs subtraction
- use AMA for error reduction
- use Furry's theoretm to reduce α^{2} noise

unsubtracted term
Subtraction term

- Connected part only
- QED only calculation consistent with QED loop calculation for larger volume
- QED+QCD
- ball park of model values
-significant exited state effects ?

Systematic effects in QED only study

- muon loop, muon line
- $a=a m_{\mu} /(106 \mathrm{MeV})$
- L= 11.9, 8.9, 5.9 fm

- known result : F2 = 0.371 (diamond) correctly reproduced (good check)

FV and discretization error could be as large as 20-30 \%, similar discretization error seen from QCD+QED study

$\mathrm{M}_{\mathrm{m}}=170 \mathrm{MeV}$ cHLbL result [Luchang Jin et al.,PRD93, 014503 (2016)]

- $V=(4.6 \mathrm{fm})^{3}, a=0.14 \mathrm{fm}, m_{\mu}=130 \mathrm{MeV}, 23 \mathrm{conf}$
- pair-point sampling with AMA (1000 eigV, 100CG) , > 6000 meas/conf
- $|x-y|<=0.7 f m$, all pairs, x2-5 samples 217 pairs (10 AMA-exact)
- $|x-y|>0.7 f m, 512$ pairs (48 AMA-exact)

- 13.2 BG/Q Rack-days

$$
\frac{\left(g_{\mu}-2\right)_{\mathrm{cHLbL}}}{2}=(0.1054 \pm 0.0054)(\alpha / \pi)^{3}=(132.1 \pm 6.8) \times 10^{-11}
$$

Strange contribution : $(0.0011 \pm 0.005)(\alpha / \pi)^{3}$

Infinite Volume Photon and Lepton QED $_{\infty}$

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$.
- Hadron part $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$ has following features due to the mass gap :
\triangleright For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{o p}\right) \sim \exp \left[-m_{\pi} \times \operatorname{dist}\left(x, y, z, x_{o p}\right)\right]$
\triangleright For fixed $\left(x, y, z, x_{\text {op }}\right)$, FV error (wraparound effect etc.) is exponentially suppressed: $\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{V}-\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{\infty} \sim \exp \left[-m_{\pi} \times L\right]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$
\left.\Delta_{V}\left[\sum_{x, y, z, x_{\mathrm{op}}} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)\right]\right] \sim \exp \left[-m_{\pi} L\right]
$$

$\left(x_{\text {ref }}=(x+y) / 2\right.$ is at middle of QCD box using transnational invariance $)$

Subtraction using current conservation

- From current conservation, $\partial_{\rho} V_{\rho}(x)=0$, and mass gap, $\left\langle x V_{\rho}(x) \mathcal{O}(0)\right\rangle \sim$ $|x|^{n} \exp \left(-m_{\pi}|x|\right)$

$$
\begin{aligned}
& \sum_{x} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)=\sum_{x}\left\langle V_{\rho}(x) V_{\sigma}(y) V_{\kappa}(z) V_{\nu}\left(x_{\mathrm{op}}\right)\right\rangle=0 \\
& \sum_{z} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)=0
\end{aligned}
$$

at $V \rightarrow \infty$ and $a \rightarrow 0$ limit (we use local currents).

- We could further change QED weight
$\mathfrak{G}_{\rho, \sigma, \kappa}^{(2)}(x, y, z)=\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, y)+\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, y)$
without changing sum $\sum_{x, y, z} \mathfrak{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$.
- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(z, z, x)=\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(y, z, z)=0$, so short distance $\mathcal{O}\left(a^{2}\right)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x, y, z) is represented by 5 parameters, compute on N^{5} grid points and interpolates. $(|x-y|<11 \mathrm{fm}$).

Results, QED case, Finite Volume Error

- QED weight : QED $_{L}$ (purple diamond), QED $_{\infty}$ without subtraction (green plus), with subtraction (blue square)
- Curves correspond to expected finite volume scaling $\left(0.371+k / L^{2}\right)$ and infinite volume scaling $\left(0.371+k e^{-m L}\right)$, where the coefficient k is chosen to match the data at $m L=4.8$.
- The right most point for the finite volume weighting function lies a bit off its scaling curve because the discretization error has not been completely removed, and the coefficient k does not contain any possible volume dependence.

$(g-2)_{\mu}$ SM Theory vs experiment

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$a_{\mu}^{\mathrm{QED}}=$	(11 658	471.808	± 0.015) $\times 10^{-10}$
${ }^{\text {EW }}$		15.4	+0.2	$) \times 10^{-10}$
$a_{\mu}^{\mathrm{had}, \mathrm{LOVVP}}=$	(694.91	± 4.27	$) \times 10^{-10}$
$a_{\mu}^{\text {fad, } \mathrm{HOVP}}=$		-9.84	± 0.07	$) \times 10^{-10}$
$a_{\mu}^{\text {had,lbl }}=$		10.5	± 2.6) $\times 10^{-10}$

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC
- Our Goal : sub 1% accuracy for HVP, and \rightarrow 10\% accuracy for HLbL

QED box in QCD box (contd.)

- $M \pi=420 \mathrm{MeV}, \mathrm{m} \mu=330 \mathrm{MeV}, 1 / \mathrm{a}=1.7 \mathrm{GeV}$
- $(16)^{3}=(1.8 \mathrm{fm})^{3}$ QCD box in $(24)^{3}=(2.7 \mathrm{fm})^{3}$ QED box

Ensemble $m_{\pi} L$ QCD Size QED Size $\frac{F_{2}\left(q^{2}=0\right)}{(\alpha / \pi)^{3}}$

161	3.87	$16^{3} \times 32$	$16^{3} \times 32$	$0.1158(8)$
241	5.81	$24^{3} \times 64$	$24^{3} \times 64$	$0.214(427)$
$161-24$		$16^{3} \times 32$	$24^{3} \times 64$	$0.1674(22)$

physical $\mathrm{M}_{\mathrm{r}}=140 \mathrm{MeV}$ cHLbL result

 [Luchang Jin et all. , Phys.Rev.Lett. 118 (2017) 022005]- $\mathrm{V}=(5.5 \mathrm{fm})^{3}, \mathrm{a}=0.11 \mathrm{fm}, \mathrm{m}_{\mu}=106 \mathrm{MeV}, 69 \mathrm{conf}$ [RBC/UKQCD]
- Two stage AMA (2000 eigV, 200CG and 400 CG) using zMobius, ~4500 meas/conf
- 160 BG/Q Rack-days

$r=\min \{|x-y|,|y-z|,|z-x|\}$
integrand safely suppressed before reaching r ~ L/2

$$
r=\max \{|x-y|,|y-z|,|z-x|\}
$$

$$
\left.a_{\mu}^{\mathrm{LbL}, \text { con }}=(0.0926 \pm 0.0077) \times\left(\frac{\alpha}{\pi}\right)^{3}=(11.60 \pm 0.96) \times 10^{-10}, \begin{array}{l}
\text { (preliminary, } \\
\text { stat err } r_{1} \text { lly }
\end{array}\right)
$$

Disconnected diagrams in HLbL

- Disconnected diagrams

Continuum Infinite Volume (a.k.a HVP way) $a_{\mu_{\mu}^{\mathrm{HyP}}}=\sum_{t} w(t) C(t), w(t) \propto t^{4} \ldots$

- One could also use infinite volume/continuum lepton\&photon diagram in coordinate space [J. Green et al. Mainz group, LAT16 proceedings] $\mathcal{L}_{\mu \nu \lambda \sigma \rho}(x, y ; p)$

- Techniques in continuum model calculation [Knect Nyffeler 2002; Jegerlehner Nyffeler 2009] : angle average over muon momentum, and carry out angle of two virtual photons

Direct 4pt calculation for selected kinematical range

[J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003(2015)]

- Compute connected contribution of 4 pt function in momentum space
- Forward amplitudes related to *(Q1) *(Q2) -> hadron cross section via dispersion relation
$\mathcal{M}_{\text {had }}\left(\gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right) \rightarrow \gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right)\right)$

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\text {TT }}$ at a fixed virtuality $Q_{1}^{2}=0.377 \mathrm{GeV}^{2}$, as a function of the other photon virtuality Q_{2}^{2}, for different values of ν. The curves represent the predictions based on Eq. (10), see the text for details. 14

Dispersive approach for HLbL

[Colangelo et al. 2014, 2015, Pauk\&Vanderhaeghen 2014]

- Using crossing symmetry, gauge invariance, 138 form factors are reduced 12 relevant for HLbL

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}}= & -e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{1}{\left(p+q_{1}\right)^{2}-m_{\mu}^{2}} \frac{1}{\left(p-q_{2}\right)^{2}-m_{\mu}^{2}} \\
& \times \sum_{j=1}^{12} \xi_{j} \hat{T}_{i_{j}}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i_{j}}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)
\end{aligned}
$$

- \quad O, , ' exchange, pion-loop (exactly scalar QED with pion Form factor)

- other contribution is neglected

Measurement of decay positron

Uniform B-field

1) Spin is toward momentum: \rightarrow more e+ detected
2) Spin is opposite to momentum: \rightarrow less e+ detected

Experimental Technique

[Slide from L. Roberts]
π

$$
\begin{aligned}
& \text { Muon polarization } \\
& \text { Muon storage ring } \\
& \text { injection \& kicking }
\end{aligned}
$$

$\mathrm{p}=3.1 \mathrm{GeV} / \mathrm{c}$

$$
\vec{\omega}_{a}=-\frac{Q e}{m} a_{\mu} \vec{B}
$$

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $K^{2}=-q^{2}>0$
- Vector current 2pt function

$$
a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right) \quad \Pi^{\mu \nu}(q)=\int d^{4} x e^{i q x}\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle
$$

- Low Q2, or long distance, part of Π (Q2) is relevant for g-2

$\operatorname{Pihat}\left(\mathrm{Q}^{2}\right)$

Current conservation, subtraction, and coordinate space representation

- Current conservation => transverse tensor

$$
\sum e^{i Q x}\left\langle J_{\mu}(x) J_{\nu}(0)\right\rangle=\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

- Coordinate space vector 2 pt Green function $\mathrm{C}(\mathrm{t})$ is directly related to subtracted Π (Q2) [Bernecker-Meyer 2011, ...]

$$
\Pi\left(Q^{2}\right)-\Pi(0)=\sum_{t}\left(\frac{\cos (q t)-1}{Q^{2}}+\frac{t^{2}}{2}\right) C(t)
$$

- $\mathrm{g}-2$ value is also related to $\mathrm{C}(\mathrm{t})$ with know kernel $\mathrm{w}(\mathrm{t})$ from QED.

$$
a_{\mu}^{\mathrm{HVP}}=\sum_{t} w(t) C(t), \quad w(t) \propto t^{4} \ldots
$$

RBC/UKQCD
Chiral Lattice quark DWF
physical point
Quark Propagator Low Mode (A2A) using All-Mode Averaging (AMA)

(plan B) Interplay between Lattice and Experiment

- Check consistency between Lattice and R-ratio
- Short distance from Lattice, Long distance from R-ratio :

$$
\text { error }<=1 \% \text { at } \mathrm{t}_{\text {lat/exp }}=2 \mathrm{fm}
$$

$$
a_{\mu}^{\mathrm{HVP}}=\left[\sum_{t=0}^{t_{\text {tatatexp }}} w(t) C(t)\right]^{\mathrm{LAT}}+\left[\int_{t_{\text {tate }+ \text { exp }}}^{\infty} d t w(t) C(t)\right]^{\mathrm{EXP}}
$$

2016 : Disconnected, charm, QED, isospin breaking effects are being included (RBC/UKQCD C. Lehner et al, also other collaborations)

Anomalous magnetic moment

- Fermion's energy in the external magnetic field:

$$
V(x)=-\vec{\mu}_{l} \cdot \vec{B}
$$

- Magnetic moment and spin g_{l} : Lande g-factor g's deviation from tree level value, 2 :

$$
\vec{\mu}_{l}=g_{l} \frac{e}{2 m_{l}} \vec{S}_{l} \quad a_{l}=\frac{g_{l}-2}{2}
$$

- Form factor : $\Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)$

After quantum correction $\Rightarrow a_{l}=F_{2}(0)$

Conserved current \& moment method

- [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

- [moment method, $\mathrm{q} 2 \rightarrow 0$] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, $q->0$ limit value is directly computed via the first moment of the relative coordinate, $\mathrm{xop}-(\mathrm{x}+\mathrm{y}) / 2$, one could show

$$
\left.\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})\right|_{\vec{q}=0}=i \sum_{x, y, z, x_{\mathrm{op}}}\left(x_{\mathrm{op}}-(x+y) / 2\right)_{i} \times
$$

to directly get $\mathrm{F}_{2}(0)$ without extrapolation.

$$
\text { Form factor : } \Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)
$$

$\mathbf{M}_{\pi}=170 \mathrm{MeV}$ cHLbL result (contd.)

"Exact" ... q = 2pi / L,

 "Conserved (current)" ... $\mathrm{q}=2 \mathrm{pi} / \mathrm{L}, 3$ diagrams"Mom" ... moment method $\mathrm{q} \gg 0$, with AMA

Method	$F_{2} /(\alpha / \pi)^{3}$	$N_{\text {conf }}$	$N_{\text {prop }}$	$\sqrt{\operatorname{Var}} r_{\max }$	SD	LD	ind-pair	
Exact	$0.0693(218)$	47	$58+8 \times 16$	2.04	3	$-0.0152(17)$	$0.0845(218)$	0.0186
Conserved	$0.1022(137)$	13	$(58+8 \times 16) \times 7$	1.78	3	$0.0637(34)$	$0.0385(114)$	0.0093
Mom. (approx)	$0.0994(29)$	23	$(217+512) \times 2 \times 4$	1.08	5	$0.0791(18)$	$0.0203(26)$	0.0028
Mom. (corr)	$0.0060(43)$	23	$(10+48) \times 2 \times 4$	0.44	2	$0.0024(6)$	$0.0036(44)$	0.0045
Mom. (tot)	$0.1054(54)$	23						

Direct 4pt calculation for selected kinematical range

[J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003(2015)]

- Compute connected contribution of 4 pt function in momentum space
- Forward amplitudes related to *(Q1) *(Q2) -> hadron cross section via dispersion relation
$\mathcal{M}_{\text {had }}\left(\gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right) \rightarrow \gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right)\right)$

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\text {TT }}$ at a fixed virtuality $Q_{1}^{2}=0.377 \mathrm{GeV}^{2}$, as a function of the other photon virtuality Q_{2}^{2}, for different values of ν. The curves represent the predictions based on Eq. (10), see the text for details. 24

Dispersive approach for HLbL

[Colangelo et al. 2014, 2015, Pauk\&Vanderhaeghen 2014]

- Using crossing symmetry, gauge invariance, 138 form factors are reduced 12 relevant for HLbL

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}}= & -e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{1}{\left(p+q_{1}\right)^{2}-m_{\mu}^{2}} \frac{1}{\left(p-q_{2}\right)^{2}-m_{\mu}^{2}} \\
& \times \sum_{j=1}^{12} \xi_{j} \hat{T}_{i_{j}}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i_{j}}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)
\end{aligned}
$$

- \quad O, , ' exchange, pion-loop (exactly scalar QED with pion Form factor)

- other contribution is neglected

Continuum Infinite Volume (a.k.a HVP way) $a_{\mu_{t}^{\mathrm{HYP}}}=\sum_{t} w(t) C(t), w(t) \propto t^{4} \ldots$

- One could also use infinite volume/continuum lepton\&photon diagram in coordinate space
[J. Green et al. Mainz group, LAT16 proceedings]

- Techniques in continuum model calculation [Knect Nyffeler 2002; Jegerlehner Nyffeler 2009] : angle average over muon momentum, and carry out angle of two virtual photons

$$
\begin{aligned}
L\left(x_{1}, x_{2}\right) & =\sum_{m, l} \sum_{\substack{l=|l-m| \\
\text { step }=2}}^{l+m}(-1)^{k} C_{k}\left(\hat{x}_{1} \hat{x}_{2}\right) \\
& \times \int d Q_{1} d Q_{2} \frac{4 Z_{1} Z_{2}}{m^{2} Q_{1} Q_{2} X_{1} X_{2}} \frac{\left(-Z_{1} Z_{2}\right)^{l}}{l+1} J_{k+1}\left(Q_{1} X_{1}\right) J_{k+1}\left(Q_{2} X_{2}\right) \\
& \times\left[\frac{\theta\left(1-Q_{2} / Q_{1}\right)}{Q_{1}^{2}}\left(\frac{Q_{2}}{Q_{1}}\right)^{m}+\frac{\theta\left(1-Q_{1} / Q_{2}\right)}{Q_{2}^{2}}\left(\frac{Q_{1}}{Q_{2}}\right)^{m}\right]
\end{aligned}
$$

Can Lattice produce a counter part ?

[J. Bijnens]

- Which momentum regimes important studied: JB and
J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]
- $a_{\mu}=\int d l_{1} d l_{2} a_{\mu}^{L L}$ with $I_{i}=\log \left(P_{i} / G e V\right)$

Which momentum regions do what:
volume under the plot $\propto a_{\mu}$

(plan B) Interplays between lattice and dispersive approach g-2

- R-Ratio error $\sim 0.6 \%$, HPQCD error $\sim 2 \%$
- Goal would be ~ 0.2 \%
- Dispersive approach from R-ratio R(s)

$$
\hat{\Pi}\left(Q^{2}\right)=\frac{Q^{2}}{3} \int_{s_{0}} d s \frac{R(s)}{s\left(s+Q^{2}\right)}
$$

Relative Err of Pihat $\left(Q^{2}\right)$

- Can we combine dispersive $\&$ lattice and get more precise (g-2)HVP than both ? [2011 Bernecker Meyer]
- Inverse Fourier trans to Euclidean vector correlator
- Relevant for g-2 $\mathrm{Q}^{2}=\left(\mathrm{m}_{\mu} / 2\right)^{2}=0.0025 \mathrm{GeV}^{2}$
- It may be interesting to think
$a_{\mu}^{\mathrm{HVP}}=\sum_{t} w(t) C(t), \quad w(t) \propto t^{4} \ldots$
$\left.Q^{2}\right)$
$=\left[\frac{\hat{\Pi}\left(Q^{2}\right)}{Q^{2}}-\frac{\hat{\Pi}\left(P^{2}\right)}{P^{2}}\right]^{\text {Exp }}+\left[\frac{\hat{\Pi}\left(P^{2}\right)}{P^{2}}\right]^{\text {Lat }}$
$\hat{\Pi}\left(Q^{2}\right)=\frac{Q^{2}}{3} \int_{s_{0}} d s \frac{R(s)}{s\left(s+Q^{2}\right)}$

Black : R-ratio , alpha QED (Jegerlehner) Red : Lattice (DWF)

AMA+MADWF(fastPV)+zMobius accelerations

- We utilize complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], zMobius, for a better approximation of the sign function.

$$
\epsilon_{L}\left(h_{M}\right)=\frac{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)-\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)+\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}, \quad \omega_{s}^{-1}=b+c \in \mathbb{C}
$$

- 1/a~2 GeV, Ls=48 Shamir ~ Ls=24 Mobius (b=1.5, c=0.5) ~Ls=10 zMobius (b_s, c_s complex varying) ~ 5 times saving for cost AND memory

Ls	\mid eps(48cube) - eps(zMobius) \|
6	0.0124
8	0.00127
10	0.000110
12	$8.05 \mathrm{e}-6$

- The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

$$
\text { sym2 : } 1-\kappa_{b} M_{4} M_{5}^{-1} \kappa_{b} M_{4} M_{5}^{-1}
$$

- Fast Pauli Villars $(m f=1)$ solve, needed for the exact solve of AMA via MADWF (Yin, Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D [Edward, Heller]
- All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical point 48 cube case. And ~ 100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this proposal (1,200 eigenV for 32cube) .

$$
\underbrace{\frac{20,000}{600}}_{\text {MADWF }+\mathrm{zMobius}+\text { deflation }} \times \underbrace{\frac{600 * 32 / 10}{300}}_{\text {AMA }+\mathrm{zMobius}}=33.3 \times 6.4=\underline{210 \text { times faster }}
$$

Covariant Approximation Averaging (CAA) a new class of Error reduction techniques

Examples of Covariant Approximations (contd.)

- All Mode Averaging AMA
Sloppy CG or Polynomial approximations

$$
\begin{aligned}
& \mathcal{O}^{\text {(appx) }}=\mathcal{O}\left[S_{l}\right], \\
& S_{l}=\sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger}, \\
& f(\lambda)= \begin{cases}\frac{1}{\lambda}, & |\lambda|<\lambda_{\mathrm{cut}} \\
P_{n}(\lambda) & |\lambda|>\lambda_{\mathrm{cut}}\end{cases} \\
& P_{n}(\lambda) \approx \frac{1}{\lambda}
\end{aligned}
$$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

accuracy control :

- low mode part : \# of eig-mode
- mid-high mode : degree of poly.

SM Theory

$$
\gamma^{\mu} \rightarrow \Gamma^{\mu}(q)=\left(\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right)
$$

- QED, hadronic, EW contributions

QED (5-loop) Aoyama et al.
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light (HIbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

QED calculations

- Fine structure constant

Experimental input : anomalous magnetic moment of Electron

$$
a_{e}=0.00115965218073(28) \quad[0.24 \mathrm{ppb}]
$$

[Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011)]
Theory input: $10^{\text {th }}$ order QED calculation (+ small had+EW)
[Aoyama, Hayakawa, Kinoshita, Nio Phys. Rev. D 91, 033006 (2015)] ${ }^{-1}=137.0359991570$ (334) [0.25 ppb]

Schwinger term $=\frac{\alpha}{2 \pi}=0.0011614$..

- $1+7+72+891+12,672$ more than 13,000 diagrams !

 KA TRIM N
 ma Ri Rim nixin m に园 m rmi Rl rul

$(g-2)_{\mu}$ SM Theory vs experiment

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$a_{\mu}^{\mathrm{QED}}=$	(11 658	471.808	± 0.015) $\times 10^{-10}$
${ }^{\text {EW }}$		15.4	+0.2	$) \times 10^{-10}$
$a_{\mu}^{\mathrm{had}, \mathrm{LOVVP}}=$	(694.91	± 4.27	$) \times 10^{-10}$
$a_{\mu}^{\text {fad, } \mathrm{HOVP}}=$		-9.84	± 0.07	$) \times 10^{-10}$
$a_{\mu}^{\text {had,lbl }}=$		10.5	± 2.6) $\times 10^{-10}$

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC
- Our Goal : sub 1% accuracy for HVP, and \rightarrow 10\% accuracy for HLbL

G-2 from BSM sources

- Typical new particle contribute g-2

$$
g-2 \sim C\left(m_{\mu} / m_{N P}\right)^{2}
$$

- To explain current discrepancy

\mathcal{C}	1	$\frac{\alpha}{\pi}$	$\left(\frac{\alpha}{\pi}\right)^{2}$
M_{NP}	$2.0_{-0.3}^{+0.4} \mathrm{TeV}$	$100_{-13}^{+21} \mathrm{GeV}$	$5_{-1}^{+1} \mathrm{GeV}$

- SUSY (scalar-lepton)
- 2 Higgs doublet models Type-X,
- Dark photons
[A. Nyfler]
 from kinematical mixings

$$
F_{\mu} F_{\mu}^{\prime}
$$

From: F. Curciarello, FCCP15, Capri, September 2015

The Muon g-2 experiments BNL E821 (-2004)

- measure precession of muon spin very accurately

$$
N(t)=N_{0}(E) \exp \left(-t / \gamma \tau_{\mu}\right)\left[1+A(E) \sin \left(\omega_{a} t+\phi(E)\right)\right]
$$

[BNL web page, g-2 collaboration]

Recipe of a g-2 measurement

1. Prepare a polarized muon beam from P -violating pion decay

2. Store in a magnetic field (let muon spin precessed)

$$
\vec{\omega}=-\frac{e}{m}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{\beta} \times \vec{E}}{c}+\frac{\eta}{2}\left(\vec{\beta} \times \vec{B}+\frac{\vec{E}}{c}\right)\right]
$$

Magic momentum, $\gamma=30(p=3 \mathrm{GeV} / \mathrm{c})$,

2. Measure positron from Pviolating muon decay
[Slide from T. Mibe, L. Roberts]

Positron time spectrum in BNL E821

Slide by P. Winter (ANL)

Shimming successfully completed in2016

- 10 months of align and optimize our shim knobs:
- 72 pole pieces
- 800 wedge shims
- 9000 iron shim foils

Shimming goal achieved with $\Delta \mathrm{B}< \pm 25 \mathrm{ppm} \sqrt{ }$

New Muon g-2/EDM Experiment at

Sub-percent accuracy on Physical point

- now adding on-physical point ($M_{\pi}=135 \mathrm{MeV}$),

2 lattice spacing $\mathrm{a}^{-1}=1.7$ and $2.4 \mathrm{GeV}, \mathrm{V} \sim(5.5 \mathrm{fm})^{3}$!

$\Delta I=1 / 2 \quad K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_{w} and $\pi \pi$ operator.
- Show data for all $K-H_{W}$ separations $t_{Q}-t_{K} \geq 6$ and $t_{\pi \pi}-t_{K}=10,12,14,16$ and 18.
- Fit correlators with $t_{\pi \pi}-t_{Q} \geq 4$
- Obtain consistent results for $t_{\pi \pi}-t_{Q} \geq 3$ or 5

[Dominant contribution to $\operatorname{Im}\left(\mathrm{A}_{0}\right)$]

SM value of $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{ReA} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
& =\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4} \\
\text { Expt: } & =(16.6 \pm 2.3) \times 10^{-4} \quad[2.1 \sigma \text { difference }]
\end{aligned}
$$

- $\operatorname{Im}\left(A_{0}\right), \operatorname{Im}\left(A_{2}\right), \delta_{0}$ and δ_{2} from lattice QCD
- $\operatorname{Re}\left(A_{2}\right)$ and $\operatorname{Re}\left(A_{0}\right)$ from measured decay rates
- $|\varepsilon|=2.228(0.011) \times 10^{-3}$ from experiment
- $\arg (\varepsilon)=\arctan \left(2 \Delta M_{K} / \Gamma_{\mathrm{S}}\right)=42.52^{\circ}$ (Bell-Steinberger relation)
- o determined from phenomenology changes '/ very small amount

Covariant Approximation Averaging (CAA) a new class of Error reduction techniques

Examples of Covariant Approximations (contd.)

- All Mode Averaging AMA
Sloppy CG or Polynomial approximations

$$
\begin{aligned}
& \mathcal{O}^{\text {(appx) }}=\mathcal{O}\left[S_{l}\right], \\
& S_{l}=\sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger}, \\
& f(\lambda)= \begin{cases}\frac{1}{\lambda}, & |\lambda|<\lambda_{\mathrm{cut}} \\
P_{n}(\lambda) & |\lambda|>\lambda_{\mathrm{cut}}\end{cases} \\
& P_{n}(\lambda) \approx \frac{1}{\lambda}
\end{aligned}
$$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

accuracy control :

- low mode part : \# of eig-mode
- mid-high mode : degree of poly.

