Lattice QCD studies of Muon g-2 and related topics

Taku Izubuchi (RBC&UKQCD)

2018-05-21, "Frontiers in Lattice Quantum Field Theory" IFT, Madrid, Spain

Contents

g-2 HVP since [T. Blum 2003]

HPQCD Riken-BNL-Columbia (RBC) /UKQCD Mainz ETMC BMW Regensburg HPQCD/FNAL/MILC PACS :

- adronic Light-by-Light (HLbL) on Lattice since [T. Blum et al 2005]
 RBC/UKQCD Mainz
- Inclusive tau decay [if time allowed] RBC/UKQCD

Collaborators / Machines

g-2 DWF HVP & HLbL	Tom Blum (Connecticut) Peter Boyle (Edinburgh) Norman Christ (Columbia Vera Guelpers (Southamp Masashi Hayakawa (Nago James Harrison (Southam Taku Izubuchi (BNL/RBF	Christoph Lehner (BNL) Kim Maltman (York) Chulwoo Jung (BNL) Andreas Jüttner (Southampton) Luchang Jin (BNL) Antonin Portelli (Edinburgh) RC)
HVP Clover on (8.5 fm) ³	Taku Izubuchi (BNL/RBRC) Christoph Lehner (BNL)	Yoshinobu Kuramashi (Tsukuba/ AICS) Eigo Shintani (RIKEN AICS)
tau decay	Peter Boyle (Edinburgh) Renwick James Hudspith (York) Taku Izubuchi (BNL/RBRC) Andreas Ju [*] ttner(Southampton) Christoph Lehner (BNL) Randy Lewis (Southampton) Kim Maltman (York) Hiroshi Ohki (RBRC/Nara Women) Antonin Portelli (Edinburgh) Matthew Spraggs (Edinburgh)	

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Support from RIKEN, JSPS, US DOE, and BNL

The RBC & UKQCD collaborations

BNL and RBRC

Mattia Bruno Tomomi Ishikawa Taku Izubuchi Luchang Jin Chulwoo Jung Christoph Lehner Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

<u>Columbia University</u>

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney David Murphy Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang

University of Connecticut

Tom Blum Dan Hoying Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Richard Kenway Julia Kettle Ava Khamseh Brian Pendleton Antonin Portelli Tobias Tsang Oliver Witzel Azusa Yamaguchi <u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner Andrew Lawson Edwin Lizarazo Chris Sachrajda

York University (Toronto)

Renwick Hudspith

$(g-2)_{\mu}$ SM Theory vs experiment

• QED, EW, Hadronic contributions

K. Hagiwara et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003 $a_{\mu}^{\rm SM} = (11 \ 659 \ 182.8 \ \pm 4.9)$ $) \times 10^{-10}$ $\times 10^{-10}$ (11)658 471.808 ± 0.015 $a^{\rm EW}$ 15.4 ± 0.2 $a^{\rm had,LOVP}$ $\times 10^{-10}$ 694.91 ± 4.27 ahad, HOVP -9.84 ± 0.07 $a^{\mathrm{had,lbl}}$ $\times 10^{-10}$ 10.5 ± 2.6 $-a_{\mu}^{\rm SM} = 28.8(6.3)_{\rm exp}(4.9)_{\rm SM} \times 10^{-10}$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL , J-PARC
- Our Goal : sub 1% accuracy for HVP, and \rightarrow **10% accuracy for HLbL**

G-2 from **BSM** sources

Typical new particle contribute g-2 g-2 ~ C $(m_{\mu} / m_{NP})^2$

To explain current discrepancy

${\mathcal C}$	1	$\frac{\alpha}{\pi}$	$\left(\frac{\alpha}{\pi}\right)^2$
$M_{\rm NP}$	$2.0^{+0.4}_{-0.3}~{ m TeV}$	$100^{+21}_{-13}~{ m GeV}$	$5^{+1}_{-1}~{ m GeV}$

- SUSY (scalar-lepton)
- 2 Higgs doublet models Type-X,
- Dark photons from kinematical mixings $\varepsilon F_{\mu\nu}F'_{\mu\nu}$

12

From: F. Curciarello, FCCP15, Capri, September 2015

muon anomalous magnetic moment

BNL g-2 till 2004 : $\sim 3 \sigma$ larger than SM prediction

Contribution	Value $ imes 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6

FNAL E989 (began 2017-) move storage ring from BNL x4 more precise results, 0.14ppm

J-PARC E34 ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

[Luchang Jin's analogy] Precession of Mercury and GR

Amount (arc- sec/century)	Cause	
5025.6	Coordinate (due to precession of equinoxes)	
531.4	Gravitational tugs of the other planets	
0.0254	Oblateness of the sun (<u>quadrupole moment</u>)	
42.98±0.04	General relativity	
5600.0	Total	
5599.7	Observed	

discrepancy recognized since 1859

Known physics

1915 New physics GR revolution

http://worldnpa.org/abstracts/abstracts_6066.pdf

precession of perihelion

[Christoph Lehner et al. 1801.07224]

Hadronic Vacuum Polarization (HVP) contribution to g-2

Leading order of hadronic contribution
(HVP)

Hadronic vacuum polarization (HVP)

$$v_{\mu} \quad \bigoplus \quad v_{\nu} = (q^2 g_{\mu\nu} - q_{\mu} q_{\nu}) \Pi_V(q^2)$$

quark's EM current : $V_{\mu} = \sum_{f} Q_{f} \bar{f} \gamma_{\mu} f$

 $\frac{\gamma}{2} \qquad \text{had} \qquad \frac{\gamma}{2} \Leftrightarrow \qquad \frac{\gamma}{2} \qquad \frac{\gamma$

Optical Theorem

$$\operatorname{Im}\Pi_{V}(s) = \frac{s}{4\pi\alpha}\sigma_{\text{tot}}(e^{+}e^{-} \to X)$$
Analycity
$$\Pi_{V}(s) - \Pi_{V}(0) = \frac{k^{2}}{\pi}\int_{4m_{\pi}^{2}}^{\infty} ds \frac{\operatorname{Im}\Pi_{V}(s)}{s(s-k^{2}-i\epsilon)}$$

[F. Jegerlehner's lecture]

Leading order of hadronic contribution (HVP)

Hadronic vacuum polarization (HVP)

g-2 from R-ratio

 \sqrt{s} (GeV)

Central values

Uncertainties

HVP from experimental data

From experimental e+ e- total cross section total (e+e-) and dispersion relation

$$a_{\mu}^{\rm HVP} = \frac{1}{4\pi^2} \int_{4m_{\pi}^2}^{\infty} ds K(s) \sigma_{\rm total}(s)$$

time like $q^2 = s \ge 4 m_{\pi}^2$ $a_{\mu}^{\text{HVP,LO}} = (694.91 \pm 4.27) \times 10^{-10}$ $a_{\mu}^{\text{HVP,HO}} = (-9.84 \pm 0.07) \times 10^{-10}$

[~0.6 % err]

KNT18 $a_{\mu}^{\rm SM}$ update

	<u>2011</u>		<u>2017</u>	
QED	11658471.81 <mark>(0.02)</mark>	\longrightarrow	11658471.90 (0.01)	[arXiv:1712.06060]
EW	15.40 <mark>(0.20)</mark>	\longrightarrow	15.36 <mark>(0.10)</mark>	[Phys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]	
NLO HLbL			0.30 (0.20)	[Phys. Lett. B 735 (2014) 90]
	HLMNT11		<u>KNT18</u>	
LO HVP	694.91 <mark>(4.27)</mark>	\longrightarrow	693.27 <mark>(2.46)</mark>	this work
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82 (0.04)	this work
NNLO HVP			1.24 (0.01)	[Phys. Lett. B 734 (2014) 144]
Theory total	11659182.80 <mark>(4.94)</mark>	\longrightarrow	11659182.05 <mark>(3.56)</mark>	this work
Experiment			11659209.10 (6.33)	world avg
Exp - Theory	26.1 (8.0)	\longrightarrow	27.1 (7.3)	this work
Δa_{μ}	3.3σ	\rightarrow	3.7σ	this work
Alex Keshavarzi (UoL) $a_{\mu}^{had,N}$	^{/P} from KN1	Г18 12	t^{th} February 2018 $19 \ / \ 22$
Alox Kochovarzi's	talk at "UVD work	ing grou	In Mulan a 2 Tha	on Initiative" @ KI

Alex Keshavarzi's talk at "HVP working group Muon g-2 Theory Initiative" @ KEK LO HVP : error 2.54 x10⁻¹⁰ [0.37%] full covariance matrix will be public soon

KNT18 $a_{\mu}^{\rm SM}$ update

The BABAR/KLOE discrepancy for $\pi\pi\gamma(\gamma)$

- BABAR and KLOE measurements most precise to date, but in poor agreement
- Others are in between, but not precise enough to decide
- No progress achieved in understanding the reason(s) of the discrepancy
- consequence: accuracy of combined results degraded
- imperative to improve accuracy of prediction (forthcoming g-2 results at FNAL, J-PARC)
- Other efforts at VEPP-2000 underway
- Design a new independent BABAR analysis

M. Davier ISR BABAR g-2

g-2 HVP Workshop, KEK 13/02/2018

25

Idea : Cross check, combine, and improve by LQCD data

[T. Blum PRL91 (2003) 052001]

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $K^2 = -q^2 > 0$
- Vector current 2pt function

$$a_{\mu} = \frac{g-2}{2} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dK^2 f(K^2) \hat{\Pi}(K^2) \quad \Pi^{\mu\nu}(q) = \int d^4x e^{iqx} \langle J^{\mu}(x) J^{\nu}(0) \rangle$$

Low Q2, or long distance, part of Π (Q2) is relevant for g-2

Simulation details [RBC/UKQCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

- pion mass $m_{\pi} = 139.2(2)$ and 139.3(3) MeV ($m_{\pi}L \lesssim 4$)
- lattice spacings a = 0.114 and 0.086 fm
- lattice scale $a^{-1} = 1.730$ and 2.359 GeV
- lattice size L/a = 48 and 64
- lattice volume $(5.476)^3$ and $(5.354)^3$ fm³

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA) [Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved statistics by more than three orders of magnitudes compared to basic CG, and $\times 10$ smaller memory via multigrid-Lanczos [Lehner 2017].

Nf=2+1 DWF QCD ensemble at physical quark mass

Euclidean Time Momentum Representation

[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

g-2 HVP contribution is

$$\begin{split} a^{HVP}_{\mu} &= \sum_{t} w(t) C(t) \qquad \text{w(t)} \sim \mathsf{t}^4 \\ w(t) &= 2 \int_0^\infty \frac{d\omega}{\omega} f_{\text{QED}}(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{t^2}{2} \right] \end{split}$$

- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{(E_{\pi\pi}-m_{\pi})t}$, is improved [Lehner et al. 2015] .
- Corresponding $\hat{\Pi}(Q^2)$ has exponentially small volume error [Portelli et al. 2016] . w(t) includes the continuum QED part of the diagram

DWF light HVP [2016 Christoph Lehner]

120 conf (a=0.11fm), 80 conf (a=0.086fm) physical point Nf=2+1 Mobius DWF 4D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius D⁺D) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA more than x 1,000 speed up compared to simple CG 28

Euclidean time correlation from $e^+e^- R(s)$ **data**

From $e^+e^- R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function C(t) is obtained

$$\begin{split} \hat{\Pi}(Q^2) &= Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)} \\ C^{\text{R-ratio}}(t) &= \frac{1}{12\pi^2} \int_0^\infty \frac{d\omega}{2\pi} \hat{\Pi}(\omega^2) = \frac{1}{12\pi^2} \int_0^\infty ds \sqrt{s} R(s) e^{-\sqrt{s}t} \end{split}$$

- C(t) or w(t)C(t) are directly comparable to Lattice results with the proper limits ($m_q \rightarrow m_q^{\text{phys}}, a \rightarrow 0, V \rightarrow \infty$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \to 0$ and/or pQCD)
- R-ratio : short distance has larger error

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

Covariance matrix among energy bin in R-ratio is not available, assumes 100% correlated

Near ρ peak, KLOE and Babar disagree

Careful comparison of R-ratio with lattice results may help

Combine R-ratio and Lattice

 Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

Continuum limit of a^W

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL)]
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit,
 Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly (all-to-all propagator with sparse random source)
- First non-zero signal

$$a_{\mu}^{
m HVP~(LO)~DISC} = -9.6(3.3)_{
m stat}(2.3)_{
m sys} imes 10^{-10}$$

Sensitive to m_{π}

crucial to compute at physical mass

HVP QED+ strong IB corrections

[V. Gulpers's talk]

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections : Qu, Qd, mu-md ≠0
- u,d,s quark mass and lattice spacing are re-tuned using {charge,neutral} x{pion,kaon} and (Omega baryon masses)
- For now, V, S, F, M are computed : assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)
- Point-source method : stochastically sample pair of 2 EM vertices a la important sampling with exact photon

QED+IB retuning [2017 C. Lehner]

- Use QED_L for photon propagator, universal finite volume correction,
 => 0.57 MeV shift
- 30 conf, a=0.11 fm, AMA per conf : 50x50 sloppy measurements for long distance, 25x25 for short distance.

$$\Delta m^{FV} = -m_{\pi} \alpha_{\text{QED}} \left(\frac{\kappa}{2m_{\pi}L} \left(1 + \frac{2}{m_{\pi}L} \right) \right)$$

HVP IB+QED corrections

Strong IB effect (left), EM effect (right)

 Could also compute the difference IB correction of a_µ(e+e-) - a_µ(*τ*) ~ O(10) x 10⁻¹⁰

[M. Bruno's talk]

R-ratio + Lattice [Christoph Lehner Lat17]

HVP Preliminary results [Christoph Lehner et al. 1801.07224]

$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.2)_{\rm A}(0.2)_{\rm Z}$	$649.7(14.2)_{\rm S}(2.8)_{\rm C}(3.7)_{\rm V}(1.5)_{\rm A}(0.4)_{\rm Z}(0.1)_{\rm E48}(0.1)_{\rm E64}$
$a_{\mu}^{\rm s, \ conn, \ isospin}$	$27.0(0.2)_{ m S}(0.0)_{ m C}(0.1)_{ m A}(0.0)_{ m Z}$	$53.2(0.4)_{ m S}(0.0)_{ m C}(0.3)_{ m A}(0.0)_{ m Z}$
$a_{\mu}^{\rm c, \ conn, \ isospin}$	$3.0(0.0)_{ m S}(0.1)_{ m C}(0.0)_{ m Z}(0.0)_{ m M}$	$14.3(0.0)_{ m S}(0.7)_{ m C}(0.1)_{ m Z}(0.0)_{ m M}$
$a_{\mu}^{\text{uds, disc, isospin}}$	$-1.0(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}$	$-11.2(3.3)_{ m S}(0.4)_{ m V}(2.3)_{ m L}$
$a_{\mu}^{\rm QED, \ conn}$	$0.2(0.2)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}$	$5.9(5.7)_{ m S}(0.3)_{ m C}(1.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(1.1)_{ m E}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_{ m S}(0.0)_{ m C}(0.0)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}$	$-6.9(2.1)_{ m S}(0.4)_{ m C}(1.4)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(1.3)_{ m E}$
$a_{\mu}^{\rm SIB}$	$0.1(0.2)_{ m S}(0.0)_{ m C}(0.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E48}$	$10.6(4.3)_{ m S}(0.6)_{ m C}(6.6)_{ m V}(0.1)_{ m A}(0.0)_{ m Z}(1.3)_{ m E48}$
$a_{\mu}^{\text{ udsc, isospin}}$	$231.9(1.4)_{ m S}(0.2)_{ m C}(0.1)_{ m V}(0.3)_{ m A}(0.2)_{ m Z}(0.0)_{ m M}$	$705.9(14.6)_{\rm S}(2.9)_{\rm C}(3.7)_{\rm V}(1.8)_{\rm A}(0.4)_{\rm Z}(2.3)_{\rm L}(0.1)_{\rm E48}$
		$(0.1)_{ m E64}(0.0)_{ m M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_{ m S}(0.0)_{ m C}(0.2)_{ m V}(0.0)_{ m A}(0.0)_{ m Z}(0.0)_{ m E}(0.0)_{ m E48}$	$9.5(7.4)_{ m S}(0.7)_{ m C}(6.9)_{ m V}(0.1)_{ m A}(0.0)_{ m Z}(1.7)_{ m E}(1.3)_{ m E48}$
$a_{\mu}^{\mathrm{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
a_{μ}	$692.5(1.4)_{ m S}(0.2)_{ m C}(0.2)_{ m V}(0.3)_{ m A}(0.2)_{ m Z}(0.0)_{ m E}(0.0)_{ m E48}$	$715.4(16.3)_{ m S}(3.0)_{ m C}(7.8)_{ m V}(1.9)_{ m A}(0.4)_{ m Z}(1.7)_{ m E}(2.3)_{ m L}$
	$(0.0)_{ m b}(0.1)_{ m c}(0.0)_{\overline{ m S}}(0.0)_{\overline{ m Q}}(0.0)_{ m M}(0.7)_{ m RST}(2.1)_{ m RSY}$	$(1.5)_{\rm E48}(0.1)_{\rm E64}(0.3)_{\rm b}(0.2)_{\rm c}(1.1)_{\overline{\rm S}}(0.3)_{\overline{\rm Q}}(0.0)_{\rm M}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

40 560 580 600 620 640 660 680 a_{μ, ud, conn, isospin} × 10¹⁰

[Antonie Geradine's talk]

[Luchang Jin et al. Phys.Rev. D96 (2017) no.3, 034515 Phys.Rev.Lett. 118 (2017) no.2, 022005]

Hadronic Light-by-Light (HLbL) contributions

///,

HLbL from Models

Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9–12) x 10⁻¹⁰ with 25-40% uncertainty

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 28.8(6.3)_{\exp}(4.9)_{SM} \times 10^{-10}$$
 [3.6 σ]

F. Jegerlehner , $x \ 10^{11}$

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
π^0,η,η'	85±13	82.7±6.4	83±12	114±10	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	—	0 ± 10	-19±19	-19±13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	—	22 ± 5	15±10	22 ± 5
scalars	-6.8 ± 2.0	-	—	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7±11.1	_	-	2.3	21±3
total	83±32	89.6±15.4	80±40	136±25	105±26	116 ± 39

Coordinate space Point photon method

[Luchang Jin et al., PRD93, 014503 (2016)]

Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :

disconnected problem in Lattice QED+QCD -> connected problem with analytic photon

QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x,y, z and x_{op} is summed over space-time exactly

- Short separations, Min[|x-z|, |y-z|, |x-y|] < R ~ O(0.5) fm, which has a large contribution due to confinement, are summed for all pairs</p>
- longer separations, Min[|x-z|, |y-z|, |x-y|] >= R, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

HLbL point source method [L. Jin et al. 1510.07100]

• Anomalous magnetic moment, $F_2(q^2)$ at $q^2
ightarrow 0$ limit

$$\frac{F_2^{\text{cHLbL}}(q^2=0)}{m} \frac{(\sigma_{s',s})_i}{2} = \frac{\sum_{x,y,z,x_{\text{op}}}}{2VT} \epsilon_{i,j,k} \left(x_{\text{op}} - x_{\text{ref}}\right)_j \cdot i\bar{u}_{s'}(\vec{0}) \mathcal{F}_k^C\left(x,y,z,x_{\text{op}}\right) u_s(\vec{0})$$

• Stochastic sampling of x and y point pairs. Sum over x and z.

$$\mathcal{F}^C_
u\left(x,y,z,x_{\mathsf{op}}
ight) \ = \ (-ie)^6 \mathcal{G}_{
ho,\sigma,\kappa}(x,y,z) \mathcal{H}^C_{
ho,\sigma,\kappa,
u}(x,y,z,x_{\mathrm{op}}),$$

Conserved current & moment method

[conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

■ [moment method, q2→0] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, q->0 limit value is directly computed via the first moment of the relative coordinate, xop - (x+y)/2, one could show $\begin{cases} x_{on}, \mu \end{cases}$

$$\frac{\partial}{\partial q_i} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{x,y,z,x_{\rm op}} (x_{\rm op} - (x+y)/2)_i \times \underbrace{x_{\rm src}}_{x_{\rm src}} \underbrace{y',\sigma'}_{y',\sigma'} \underbrace{z',\nu'}_{z',\nu'} \underbrace{x',\rho'}_{x',\rho'} \underbrace{x_{\rm snk}x_{\rm sr}}_{x_{\rm snk}x_{\rm sr}}$$

to directly get $F_2(0)$ without extrapolation.

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$
 49

HVP Current conservation & subtractions

• conservation => transverse tensor $\Pi^{\mu\nu}(q) = (\hat{q}^2 \delta^{\mu\nu} - \hat{q}^{\mu} \hat{q}^{\nu}) \Pi(\hat{q}^2)$ In infinite we have a Q. The (r)

- In infinite volume, q=0, $\prod_{\mu \nu} (q) = 0$
- For finite volume, $\prod_{\mu \nu} (0)$ is exponentially small (L.Jin, use also in HLbL)

$$\int_{V} dx^{4} \langle V_{\mu}(x)\mathcal{O}(0)\rangle = \int_{V} dx^{4} \,\partial_{x} \left(x \langle V_{\mu}(x)\mathcal{O}(0)\rangle\right)$$
$$= \int_{\partial V} dx^{3} \,x \langle V_{\mu}(x)\mathcal{O}(0)\rangle \propto L^{4} \exp(-ML/2) \to 0$$

• e.g. DWF L=2, 3, 5 fm $\prod_{\mu \nu} (0) = 8(3)e-4$, 2(13)e-5, -1(5)e-8

Subtract $\prod_{\mu \nu}$ (0) alternates FVE, and reduce stat error "-1" subtraction trick [Bernecker & Meyer, Maintz] :

$$\Pi^{\mu\nu}(q) - \Pi^{\mu\nu}(0) = \int d^4x (e^{iqx} - 1) \langle J^{\mu}(x) J^{\nu}(0) \rangle_{_{50}}$$

cHLbL Subtraction using current conservation

• From current conservation, $\partial_{\rho}V_{\rho}(x) = 0$, and mass gap, $\langle xV_{\rho}(x)\mathcal{O}(0)\rangle \sim |x|^n \exp(-m_{\pi}|x|)$

$$\sum_{x} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x, y, z, x_{\text{op}}) = \sum_{x} \langle V_{\rho}(x) V_{\sigma}(y) V_{\kappa}(z) V_{\nu}(x_{\text{op}}) \rangle = 0$$
$$\sum_{z} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x, y, z, x_{\text{op}}) = 0$$

at $V \to \infty$ and $a \to 0$ limit (we use local currents).

We could further change QED weight

$$\begin{split} \mathfrak{G}_{\rho,\sigma,\kappa}^{(2)}(x,y,z) &= \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,y) + \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,y) \\ \text{without changing sum } \sum_{x,y,z} \mathfrak{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}). \end{split}$$

- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(z,z,x) = \mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(y,z,z) = 0$, so short distance $\mathcal{O}(a^2)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x, y, z) is represented by 5 parameters, compute on N^5 grid points and interpolates. (|x y| < 11 fm).

Dramatic Improvement ! Luchang Jin

 $\begin{cases} x_{\rm op}, \mu \\ x, \rho \end{cases}$

 y, σ

SU(3) hierarchies for d-HLbL

- At m_s=m_{ud} limit, following type of disconnected HLbL diagrams survive Q_u + Q_d + Q_s = 0
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by O(m_s-m_{ud}) / 3 and O((m_s-m_{ud})²)

Disconnected calculation

- We can use two point source photons at y and z, which are chosen randomly. The points x_{op} and x are summed over exactly on lattice.
- Only point source quark propagators are needed. We compute M point source propagators and all M^2 combinations of them are used to perform the stochastic sum over r = z y.

$$\mathcal{F}^{D}_{\nu}(x, y, z, x_{\rm op}) = (-ie)^{6} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}^{D}_{\rho, \sigma, \kappa, \nu}(x, y, z, x_{\rm op})$$
(13)

$$\mathcal{H}^{D}_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{\rm op}) = \left\langle \frac{1}{2} \Pi_{\nu,\kappa}(x_{\rm op},z) \left[\Pi_{\rho,\sigma}(x,y) - \Pi^{\rm avg}_{\rho,\sigma}(x-y) \right] \right\rangle_{\rm QCD}$$
(14)

$$\Pi_{\rho,\sigma}(x,y) = -\sum_{q} (e_q/e)^2 \operatorname{Tr}[\gamma_{\rho} S_q(x,y) \gamma_{\sigma} S_q(y,x)].$$
(15)

Disconnected claculation

$$\frac{F_2^{\text{dHLbL}}(0)}{m} \frac{(\sigma_{s',s})_i}{2} = \sum_{r,x} \sum_{x_{\text{op}}} \frac{1}{2} \epsilon_{i,j,k}(\tilde{x}_{\text{op}})_j \cdot i \, \bar{u}_{s'}(\vec{0}) \, \mathcal{F}_k^D(x, y = r, z = 0, x_{\text{op}}) u_s(\vec{0}) \quad (16)$$

$$\mathcal{H}^{D}_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{\rm op}) = \left\langle \frac{1}{2} \Pi_{\nu,\kappa}(x_{\rm op},z) \left[\Pi_{\rho,\sigma}(x,y) - \Pi^{\rm avg}_{\rho,\sigma}(x-y) \right] \right\rangle_{\rm QCD}$$
(17)

$$\sum_{x_{\rm op}} \frac{1}{2} \epsilon_{i,j,k}(x_{\rm op})_j \langle \Pi_{\rho,\sigma}(x_{\rm op},0) \rangle_{\rm QCD} = \sum_{x_{\rm op}} \frac{1}{2} \epsilon_{i,j,k}(-x_{\rm op})_j \langle \Pi_{\rho,\sigma}(-x_{\rm op},0) \rangle_{\rm QCD} = 0$$

- Because of the parity symmetry, the expectation value for the left loop average to zero.
- $[\Pi_{\rho,\sigma}(x,y) \Pi_{\rho,\sigma}^{\text{avg}}(x-y)]$ is only a noise reduction technique. $\Pi_{\rho,\sigma}^{\text{avg}}(x-y)$ should remain constant through out the entire calculation.

- For QED_L , we can compute the QED function for all z given the y location fixed and x summed over. Allow us to compute all combination of y, z with little efforts.
- For QED_∞, although we can compute all the function G_{ρ,σ,κ}(x, y, z) simply by interpolate, we cannot easily compute this function (even after fixing y) for all x and z, simply because of its cost is proportion to Volume².
- However, we with QED_{∞} and interpolation, we can freely choose which coordinates we compute. For example, we may compute all z for $|x y| \leq 5$, and sample z for |x y| > 5.

140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al., Phys.Rev.Lett. 118 (2017) 022005]

Using AMA with 2,000 zMobius low modes, AMA

(statistical error only)

$$\frac{g_{\mu} - 2}{2} \Big|_{cHLbL} = (0.0926 \pm 0.0077) \times \left(\frac{\alpha}{\pi}\right)^3 = (11.60 \pm 0.96) \times 10^{-10}$$
$$\frac{g_{\mu} - 2}{2} \Big|_{dHLbL} = (-0.0498 \pm 0.0064) \times \left(\frac{\alpha}{\pi}\right)^3 = (-6.25 \pm 0.80) \times 10^{-10}$$
$$\frac{g_{\mu} - 2}{2} \Big|_{HLbL} = (0.0427 \pm 0.0108) \times \left(\frac{\alpha}{\pi}\right)^3 = (5.35 \pm 1.35) \times 10^{-10}$$

Updates from PRL (2017)

[Tom Blum, C. Lehner, TI, Luchang Jin]

Discretization error

 \rightarrow a scaling study for 1/a = 2.7 GeV, 64 cube lattice at physical quark mass for both connected and disconnected is proposed to ALCC at Argonne [Tom Blum Lat17]

Finite volume

Using Infinite Volume and continuum lepton + photon diagrams using L~ 5, 6, 10 fm box [C.Lehner Uconn g-2 Theory Initiative] [TI Lat17]

Nf=2+1 DWF QCD ensemble at physical quark mass

cHLbL Different lattice spacings

cHLbL: lattice spacing effect (preliminary)

1/a = 2.37 GeV, 1.73 GeV, 1.0 GeV

- Add new 24³, 1 GeV, ID ensemble (green)
- I and ID slightly different, but disc. errors similar
- Collecting more statistics (9 configs)

• Significant increase as $a \rightarrow 0$

dHLbL Different lattice spacings

dHLbL contribution: lattice spacing effect (preliminary)

- Large negative increase tends to cancel connected one
- Collecting more statistics!

Remaining dHLbL

- These are the subleading disconnected diagrams in the SU(3) limit.
- The right diagram has a factor of 1/3 suppression from the multiplicity of the diagram compare with the left diagram, i.e. the external photon is more likely to be on the loop with three photons.
- For the left diagram, the moment method works just like the connected case. With both QED_L or QED_∞, we can sample x, y and sum over z. We can use the M² trick for the x, y sampling. Low-modes-averaging for the loop with z.
- For the right diagram, The moment method still works, however, we have to use a point on the other loop as the reference point, which may be more noisy. But as mentioned above, the right diagram is more suppressed.

Infinite Volume Photon and Lepton QED $_\infty$

[Feynman, Schwinger, Tomonaga] [Mainz]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$.
- Hadron part $\mathcal{H}^C_{
 ho,\sigma,\kappa,
 u}(x,y,z,x_{
 m op})$ has following features due to the mass gap :
 - ▷ For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x, y, z, x_{op}) \sim \exp[-m_{\pi} \times \operatorname{dist}(x, y, z, x_{op})]$
 - ▷ For fixed (x, y, z, x_{op}) , FV error (wraparound effect etc.) is exponentially suppressed: $\mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{V} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{\infty} \sim \exp[-m_{\pi} \times L]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$\Delta_V \left[\sum_{x,y,z,x_{op}} \mathcal{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}^C_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{op}) \right] \sim \exp[-m_{\pi}L]$$

 $(x_{ref} = (x + y)/2$ is at middle of QCD box using transnational invariance)

Preliminary results, QCD case

- QCD case with physical point quark mass,
- $48^3 \times 96$ lattice, with $a^{-1} = 1.73 \text{ GeV}$, $m_{\pi} = 139 \text{ MeV}$, $m_{\mu} = 106 \text{ MeV}$.

• c.f. QED_L case, $\frac{g_{\mu}-2}{2}\Big|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \left(\frac{\alpha}{\pi}\right)^3$

Discretization error & QED_L FV error summary (preliminary)

HLbL (near) future plans

- c-HLbL, Leading d-HLbL :
 - Finalize QED_L Statistical, FV, discretization analysis
 - Same for QED_Inf (Noisier)
- Higher order d-HLbL
- Comparing with Long distance LQCD calculation with Model/dispersive Hadron contributions (pi0 exchange, ...), and perhaps combine LQCD+Model/dispersive

Summary

- Lattice calculation for g-2 calculation is improved very rapidly
- <u>HVP</u> [Christoph Lehner et al.]
 - New methods using low mode for connected at physical quark mass,
 - disconnected quark loop at physical quark mass,
 - Combining with R-ratio experiment data for cross-check and improvement => 1% error
 - Eventually the window will be enlarged for a pure LQCD prediction
 - QED and IB studies are included. [V. Gulper's talk]
 - Long distance 2 pi contribution from a separate analysis (distillation, GEVP) [A. Meyer et al]
 - Tau input for g-2 and Lattice interplay [M. Bruno's talk]
- <u>HLbL</u> [Luchang Jin et al]
 - computing leading disconnected diagrams :
 -> 8 % stat error in connected, 13 % stat error in leading disconnected
 - coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), config-by-config conserved external current
 - take moment of relative coordinate to directly take $q \rightarrow 0$
 - AMA, zMobius, 2000 low modes
 - Infinite volume / continuum QED weight function to avoid power-like FV
- Goal : HVP sub 1% (then 0.25%) , HLbL 10% error

```
Can we see the next physics Revolution (c.f GW)?
```


[Eigo Shintani Lat17]

Studies of finite volume

ChPT

Aubin et al., PRD93(2016)

- > Lowest-order SChPT gives VPF tensor: $\Pi_{\mu\nu}(q)$
- > 10% -- 15% discrepancy between $a_{\mu}^{HLO}[A_1]$ and $a_{\mu}^{HLO}[A_1^{44}]$

consistent with lattice calculation (L=3.8 fm, 0.22 GeV pion, m_{π} L=4.2)

Gounaris-Sakurai model

Wittig (2016,2017), Mainz 1705.01775

> By using time-like pion form factor, g-2 can be described in infinite volume. > 3% FV effect in L=4 fm, 0.19 GeV pion, $m_{\pi}L=4$

Anisotropic study

Lehner (2016)

- > Coordinate space integral along temporal or spatial direction.
- > Discrepancy is a_{μ}^{HLO} [spatial] a_{μ}^{HLO} [temporal] ~ 3%.

Direct lattice study (PACS)

- Comparison between two volumes in physical pion at fixed a
- \succ L > 5 fm, m_{π}L \gtrsim 3.8
- Compare the different boundary

[Eigo Shintani Lat17]

PACS 96⁴ and 64⁴ at a=0.08 fm

PACS group recently generates two gauge ensembles:

- Nf=2+1 O(a) improved clover fermion + Stout smearing
- > a=0.083 fm, and two lattice sizes 64^4 and 96^4
- > (almost) physical pion,

L=5.4 fm, 0.140 GeV ($m_{\pi}L=3.8$), with K_{ud}=0.126117, K_s=0.124790 L=8.1 fm, 0.145 GeV ($m_{\pi}L=6.0$) with K_{ud}=0.126117, K_s=0.124902

70

~5 MeV difference in pion mass

• Slightly negative for $t_{max} > 1.3 \text{ fm} \rightarrow \Delta_{FV}[(L/a=96)-(L/a=64)]\sim-10$, opposite sign from expectation (ChPT etc) Aubin et al., PRD93(2016)

However pion mass difference, $m_{\pi}[(L/a=96)-(L/a=64)] = +5$ MeV, due to slightly different K_s in two ensembles. For same m_{π} such a difference would have been reduced by $\Delta a_{\mu} = +3$ under assumption from ansatz in HPQCD(2016), Mainz (2017) \Rightarrow conservatively $\sim \pm 2(2)\%$ FV correction in L/a=64 lattice at finite $t_{max} \sim 2.5$ fm including mass correction.

CKM V_{us} from **Inclusive tau decay**

Yet another by-product of muon g-2 HVP

[Hiroshi Ohki et al. arXiv:1803.07228]

• Experiment side : $\tau \to \nu + had$ through V-A vertex. EW correction $S_{EW}^{\Pi(Q^2)}$

$$R_{ij} = \frac{\Gamma(\tau^- \to \operatorname{hadrons}_{ij} \nu_{\tau})}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

$$= \frac{12\pi |V_{ij}|^2 S_{EW}}{m_{\tau}^2} \int_0^{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right) \underbrace{\left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s)\right]}_{\equiv \operatorname{Im}\Pi(s)}$$

• Lattice side : The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) currentcurrent two point

Finite Energy Sum Rule (FESR)

[Shifman, Vainshtein, and Zakharov '79]

The finite energy sum rule (FESR)

$$\int_0^{s_0} \omega(s)\rho(s)ds = -\frac{1}{2\pi i} \oint_{|s|=s_0} \omega(s)\Pi(s)ds, \quad (s_0: \text{ finite energy})$$

w(s) is an arbitrary regular function such as polynomial in s.

• LHS : spectral function $\rho(s)$ is related to the experimental τ inclusive decays

$$\frac{dR_{us;V/A}}{ds} = \frac{12\pi^2 |V_{us}|^2 S_{EW}}{m_\tau^2} \left(1 - \frac{s}{m_\tau^2}\right)^2 \left[\left(1 + 2\frac{s}{m_\tau^2}\right) \operatorname{Im}\Pi^1(s) + \operatorname{Im}\Pi^0(s)\right]$$

$$\tilde{\rho}(s) \equiv |V_{us}|^2 \left[\left(1 + 2\frac{s}{m_\tau^2}\right) \operatorname{Im}\Pi^1(s) + \operatorname{Im}\Pi^0(s)\right]$$

$$\lim(s) \quad \text{pQCD}$$

τ experiment

- τ result v.s. non- τ result : more than 3 σ deviation : IVusl puzzle
- new physics effect?
- incl. analysis uses Finite energy sum rule (FESR)
- pQCD and higher order OPE for FESR: underestimation of truncation error and/or non-perturbative effects ? (c.f. alternative FESR approach, R. Hudspith et. al arXiv:1702.01767)

Our new method : Combining FESR and Lattice

• If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s = -Q_k^2 < 0$, we could extend the FESR with weight function w(s) to have poles there,

$$\begin{split} \int_{s_{th}}^{\infty} w(s) \mathrm{Im}\Pi(s) &= \pi \sum_{k}^{N_p} \mathrm{Res}_k [w(s)\Pi(s)]_{s=-Q_k^2} \\ \Pi(s) &= \left(1 + 2\frac{s}{m_{\tau}^2}\right) \mathrm{Im}\Pi^{(1)}(s) + \mathrm{Im}\Pi^{(0)}(s) \propto s \ (|s| \to \infty) \end{split}$$

• For $N_p \geq 3$, the $|s| \rightarrow \infty$ circle integral vanishes.

weight function w(s)

• Choice of weight function

$$w(s) = \prod_{k}^{N_{p}} \frac{1}{(s+Q_{k}^{2})} = \sum_{k} a_{k} \frac{1}{s+Q_{k}^{2}}, \quad a_{k} = \sum_{j \neq k} \frac{1}{Q_{k}^{2}-Q_{j}^{2}}$$
$$\implies \sum_{k} (Q_{k})^{M} a_{k} = 0 \quad (M = 0, 1, \cdots, N_{p} - 2)$$

- The residue constraints automatically subtracts $\Pi^{(0,1)}(0)$ and $s\Pi^{(1)}(0)$ terms.
- For experimental data, $w(s) \sim 1/s^n, n \geq 3$ suppresses
 - ▷ larger error from higher multiplicity final states at larger $s < m_{\tau}^2$ ▷ uncertanties due to pQCD+OPE at $m_{\tau}^2 < s$
- For lattice, Q_k^2 should be not too small to avoid large stat. error, $Q^2 \rightarrow 0$ extrapolation, Finite Volume error. Also not too larger than m_{τ}^2 to make the suppression in time-like, higher energy, higher multiplicity, region enhanced.
- Comparison of different *C*, *N* values provides a self-consistency check for reliable error.

τ inclusive decay experiments

To compare with experiments, $\tilde{\rho}(s) \equiv |V_{us}|^2 \left[\left(1 + 2\frac{s}{m_\tau^2} \right) \operatorname{Im}\Pi^1(s) + \operatorname{Im}\Pi^0(s) \right]$ a conventional value of IVusl=0.2253 is used Belle K π^0 , $\overline{K}^0\pi$ (Adematz) Belle $\overline{K}^0 \pi \pi^0$ BaBar K $\pi^{\dagger}\pi$ 0.1 EPH $\overline{K} 2\pi, K(3-5)\pi, K\eta$ OCD, D=0 OPE (nf=3) 0.01 0.001 $\tilde{\rho}(s)$ 0.0001 1e-05 $s [GeV^2]$

For K pole, we assume a delta function form $\gamma_K \omega(m_K^2)$

 $\gamma_K \sim 2|V_{us}|^2 f_K^2$ obtained from either experimental value of K $\rightarrow \mu$ or $\tau \rightarrow$ k decay width. $\gamma_K[\tau \rightarrow K\nu_{\tau}] = 0.0012061(167)_{exp}(13)_{IB}$ [HFAG16] $\gamma_K[K_{\mu 2}] = 0.0012347(29)_{exp}(22)_{IB}$ [PDG16] • example: N=3, $\{Q_1^2, Q_2^2, Q_3^2\} = \{0.1, 0.2, 0.3\}$ [GeV²]

• example: N=4, $\{Q_1^2, Q_2^2, Q_3^2, Q_4^2\} = \{0.1, 0.2, 0.3, 0.4\}$ [GeV²]

• example: N=5, $\{Q_1^2, Q_2^2, Q_3^2, Q_4^2, Q_5^2\} = \{0.1, 0.2, 0.3, 0.4, 0.5\}$ [GeV²]

QCD ensemble and statistics

- Main analysis is on two ensemble, at almost physical quark masses ($M_{\pi} \approx 140$ MeV, $M_K \approx 499$ MeV), V=(5 fm)³.
- Correct the residual up and strange quark mass error by partially quenched calculation.
- Consistent with other heavier / smaller ensemble are used to estimate size and direction of discretization errors.

Vol	a^{-1} [GeV]	M_{π} [MeV]	M_K [MeV]	conf
$48^3 \times 96$	1.7295(38)	139	499	88
		135	496	5 (PQ-correction)
$64^3 \times 128$	2.359(7)	139	508	80
		135	496	5 (PQ-correction)

Tuning of the "inclusiveness" of experimental spectral integral

$$(N = 4, \Delta = 0.067 \text{ GeV}^2)$$

K, K π dominates spectral integrals,

high multiplicity modes and pQCD ($s>m_{\tau}^2)$ strongly suppressed

Lattice residue contributions

$$(N = 4, \Delta = 0.067 \text{ GeV}^2)$$

Ratios of each contribution of V/A with spin=0, 1 to the total residue (Lattice) $A^{(0)}$ dominance (K-pole)

IVusl from inclusive decays

- 4 channels: Vector or Axial (V or A), spin 0 and 1
- A0 channel is dominated by K pole.
 - $\rightarrow\,$ For the K pole contribution we use

 $f_K^{phys} = 0.15551(83)[\text{GeV}]$ [RBC/UKQCD, 2014] instead of $A^{(0)}$

• Other channels :

A1, V1, V0 (& residual A0) \rightarrow multi hadron states & pQCD ("other")

• We take the continuum limit using the data L=48 and 64

0

$$V_1 + V_0 + A_1 + A_0 : |V_{us}^{V_1 + V_0 + A_1 + A_0}| = \sqrt{\frac{\rho_{exp}^{K-pole} + \rho_{exp}^{others}}{(f_K^{phys})^2 \omega(m_K^2) + F_{lat}(\Pi_{others}) - \rho_{pQCD}}},$$

$$\rho_{exp}^{others} = |V_{us}|^2 \int_{s_{th}}^{m_{\tau}^2} ds \omega(s) \operatorname{Im}\Pi(s) \qquad \rho_{pQCD} = \int_{m_{\tau}^2}^{\infty} ds \omega(s) \Pi_{OPE}(s)$$

$$F_{lat} = \sum_{k=1}^{N} \operatorname{Res}(\omega(-\mathbf{Q}_k^2)) \Pi_{lat}(-\mathbf{Q}_k^2) \qquad (17)$$

Systematic error estimate

• Higher order (a^4) discretization error for V1+V0+A1+(residual A0)

 $\mathcal{O}(C^2 a^4) \sim 0.1 C a^2, \ (a^{-1} = 2.37 [\text{GeV}])$

Two lattice ensembles yield (less than)10% difference

 \rightarrow We estimate 10% reduction of O($a^4)$ relative to O(a^2)

- Finite volume correction
 - 1 loop ChPT analysis of current-current correlation function on finite volume for $K\pi$ channel (V1).
- Isospin breaking effects

s-dependent strong isospin breaking corrected K π experimental data used. Theory error for dominant K π channels: 0.2 % for electromagnetic effects and ~ 1% strong isospin breaking effect on V1. [Ref: Antonelli, et al., JHEP10(2013)070]

• pQCD (OPE) uncertainty

2% for possible quark hadron duality-violation effect

For small C, statistical error dominates.

For large C, discretization error becomes large.

We obtain optimal inclusive determinations around C=0.7.

Lattice Inclusive $|V_{us}|$ determinations

Theory and experimental errors are included.

The result is stable against changes of C and N.

$$N = 4, C = 0.7 [\text{GeV}^2] : |V_{us}| = 0.2228(15)_{exp}(13)_{th}$$
 (0.87% total error)

Comparison to $|V_{us}|$ from others

All our results (C<1, N=3, 4, 5) are consistent with each other within 1 σ error, as well as to CKM unitarity.

Infinite Volume Photon and Lepton QED_∞

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$.
- Hadron part $\mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{\mathrm{op}})$ has following features due to the mass gap :
 - ▷ For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x, y, z, x_{op}) \sim \exp[-m_{\pi} \times dist(x, y, z, x_{op})]$
 - ▷ For fixed (x, y, z, x_{op}) , FV error (wraparound effect etc.) is exponentially suppressed: $\mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{V} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{\infty} \sim \exp[-m_{\pi} \times L]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$\Delta_V \left[\sum_{x,y,z,x_{op}} \mathcal{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}^C_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{op}) \right] \sim \exp[-m_{\pi}L]$$

 $(x_{ref} = (x + y)/2$ is at middle of QCD box using transnational invariance)

Preliminary results, QCD case

- QCD case with physical point quark mass,
- $48^3 \times 96$ lattice, with $a^{-1} = 1.73 \text{ GeV}$, $m_{\pi} = 139 \text{ MeV}$, $m_{\mu} = 106 \text{ MeV}$.

• c.f. QED_L case, $\frac{g_{\mu}-2}{2}\Big|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \left(\frac{\alpha}{\pi}\right)^3$

Dispersive + Lattice

- There are wide variety of application for dispersive analysis using both inclusive decay data (real world!) + non-perturbative Lattice QCD
- Quark hadron duality-violation is suppressed by non-perturbative LQCD
- Lattice point of view : good use of non-plateau region data, which otherwise is wasted !

Must be many more interesting applications

source operator independence

[Max Hansen Lat17]

Total rates from LQCD via Backus-Gilbert

Begin with a **four-point function** designed to give a particular spectral decomposition

 $G(\tau) = \sum_{n} |\langle n, L | \mathcal{J} | N \rangle|^2 e^{-E_n(L)\tau}$

Apply the **Backus-Gilbert method** to the inverse Laplace problem

$$G(\tau) = \int_0^\infty \frac{d\omega}{2\pi} \ \rho(\omega, L) \xrightarrow{} \widehat{\rho}(\overline{\omega}, L, \Delta) = \int d\omega \ \delta_\Delta(\bar{\omega}, \omega) \ \rho(\omega, L)$$

Backus-Gilbert

Estimate the ordered double limit to extract total transition rates

Analytic structure of Compton amplitude

Decay amplitude: $|\mathcal{M}|^2 = |V_{qQ}|^2 G_F^2 M_B l^{\mu\nu} W_{\mu\nu}$ (function of v·q and q²) Structure function:

$$\begin{split} W_{\mu\nu} &= \sum_{X} (2\pi)^{3} \delta^{4}(p_{B} - q - p_{X}) \frac{1}{2M_{B}} \langle B(p_{B}) | J_{\mu}^{\dagger}(0) | X \rangle \langle X | J_{\nu}(0) | B(p_{B}) \rangle \\ \hline \mathbf{v} \cdot \mathbf{q} & \int_{\mathbb{Z}_{p}}^{\mathbb{Z}_{p}} \left[T(v \cdot q) = \frac{1}{\pi} \int_{-\infty}^{(v \cdot q)_{\max}} d(v \cdot q') \frac{\mathrm{Im}T(v \cdot q')}{v \cdot q' - v \cdot q} \right] \\ \hline \frac{1}{2M_{B}} (M_{B}^{2} + q^{2} - m_{X}^{2}) & \int_{\mathbb{Z}_{p}}^{\mathbb{Z}_{p}} ((2M_{B} + M_{X})^{2} - q^{2} - M_{B}^{2}) \\ \hline \mathrm{Calculable on the lattice} \\ \mathrm{in the unphysical kinematical regime} \\ \hline T_{\mu\nu} &= i \int d^{4}x \, e^{-iqx} \frac{1}{2M_{B}} \langle B | T\{J_{\mu}^{\dagger}(x) J_{\nu}(0)\} B \rangle \end{split}$$

June 21, 2017

S. Hashimoto (KEK/SOKENDAI)

Page 7

Future plans

- HVP : complete QED and Isospin study, improve, tau
- HVP: FV error study on ~ (10 fm)³ box
- HLbL: (discretization error) Nf=2+1 DWF/ Mobius ensemble at physical point, L=5.5 fm, a=0.083 fm, (64)³ at Mira, ALCC @Argonne started to run
- HLbL: FV error study on ~ (10 fm)³ box
- HLbL: Subleading Disconnected diagrams

Backup slides

1. Introduction[Slide from Eigo Shintani]Lattice works

Approaches to determination of IVusI from inclusive τ decays

Method	pQCD (OPE)	issues	Precision limit for IVusl
Conventional FESR	higher order OPE: vacuum saturation approximation	inconsistent OPE treatment ([Ref:HLMZ 17]) large contributions from high-s region contribution	3+σ discrepancy from CKM unitarity (uncontrolled QCD systematic errors?)
Alternative FESR [HLMZ 17]	higher order OPE: fit by experimental data, checked with lattice QCD data	large contributions from high-s region	dominant high multiplicity experimental data (residual modes : 25% error to the total contribution) [1.1% total error]
Our method (lattice-based inclusive analysis)	systematically suppres via first principle lat	sed uncertainties tice QCD data	currently lattice and experimental errors are comparable (<1%) pQCD error is negligible. [0.87 % total error]

QCD box in QED box

- FV from quark is exponentially suppressed ~ exp($M_{\pi} L_{QCD}$)
- Dominant FV effects would be from photon
- Let photon and muon propagate in larger (or infinite) box than that of quark

 We could examine different lepton/photon in the off-line manner e.g. QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging [Lehner TI LATTICE14] or Infinite Vol. Photon propagators [C. Lehner, L.Jin, TI LATTICE15] [Maintz group, LATTICE16]

Hadronic Light-by-Light

- 4pt function of EM currents
- No direct experimental data available
- Dispersive approach

$$\Gamma^{(\text{Hlbl})}_{\mu}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \frac{\Pi^{(4)}_{\mu\nu\rho\sigma}(q, k_1, k_3, k_2)}{k_1^2 k_2^2 k_3^2} \\ \times \gamma_{\nu} S^{(\mu)}(\not p_2 + \not k_2) \gamma_{\rho} S^{(\mu)}(\not p_1 + \not k_1) \gamma_{\sigma}$$

$$\Pi^{(4)}_{\mu\nu\rho\sigma}(q, k_1, k_3, k_2) = \int d^4x_1 d^4x_2 d^4x_3 \exp[-i(k_1 \cdot x_1 + k_2 \cdot x_2 + k_3 \cdot x_3)] \\ \times \langle 0|T[j_{\mu}(0)j_{\nu}(x_1)j_{\rho}(x_2)j_{\sigma}(x_3)]|0\rangle$$

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$

Our Basic strategy : Lattice QCD+QED system

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function $\pi^{(4)}$ which is sampled in lattice QCD with chiral quark (Domain-Wall fermion)
- Photon & lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for given loop momenta [L. Jin et al 2015] (no noise from QED+lepton).

$$\Gamma_{\mu}^{(\text{Hlbl})}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_1, k_2, k_3) \times [S(p_2)\gamma_{\nu}S(p_2 + k_2)\gamma_{\rho}S(p_1 + k_1)\gamma_{\sigma}S(p_1) + (\text{perm.})]$$

- set spacial momentum for

 external EM vertex q
 in- and out- muon p, p'
 q = p-p'
- set time slice of muon source(t=0), sink(t') and operator (t_{op})
- take large time separation for ground state matrix element

QCD+QED method [Blum et al 2015]

- One photon is treated analytically
- other two sampled stochastically
- needs subtraction
- use AMA for error reduction
- use Furry's theoretm to reduce α^2 noise

- Connected part only
- QED only calculation consistent with QED loop calculation for larger volume
- QED+QCD
- ball park of model values
- -significant exited state effects ?

Systematic effects in QED only study

- muon loop, muon line
- $a = a m_{\mu} / (106 \text{ MeV})$
- L= 11.9, 8.9, 5.9 fm

known result : F2 = 0.371 (diamond) correctly reproduced (good check)

FV and discretization error could be as large as 20-30 %, similar discretization error seen from QCD+QED study

104

M_{π} =170 MeV cHLbL result [Luchang Jin et al., PRD93, 014503 (2016)]

- $V=(4.6 \text{ fm})^3$, a = 0.14 fm, $m_{\mu}=130$ MeV, 23 conf
- pair-point sampling with AMA (1000 eigV, 100CG) ,
 > 6000 meas/conf
 - |x-y| <= 0.7fm, all pairs, x2-5 samples
 217 pairs (10 AMA-exact)

|x-y| > 0.7fm, 512 pairs (48 AMA-exact)

Infinite Volume Photon and Lepton QED_∞

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$.
- Hadron part $\mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{\mathrm{op}})$ has following features due to the mass gap :
 - ▷ For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x, y, z, x_{op}) \sim \exp[-m_{\pi} \times dist(x, y, z, x_{op})]$
 - ▷ For fixed (x, y, z, x_{op}) , FV error (wraparound effect etc.) is exponentially suppressed: $\mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{V} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}|_{\infty} \sim \exp[-m_{\pi} \times L]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$\Delta_V \left[\sum_{x,y,z,x_{op}} \mathcal{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}^C_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{op}) \right] \sim \exp[-m_{\pi}L]$$

 $(x_{ref} = (x + y)/2$ is at middle of QCD box using transnational invariance)

Subtraction using current conservation

• From current conservation, $\partial_{\rho}V_{\rho}(x) = 0$, and mass gap, $\langle xV_{\rho}(x)\mathcal{O}(0)\rangle \sim |x|^n \exp(-m_{\pi}|x|)$

$$\sum_{x} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}) = \sum_{x} \langle V_{\rho}(x)V_{\sigma}(y)V_{\kappa}(z)V_{\nu}(x_{\text{op}})\rangle = 0$$
$$\sum_{z} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}) = 0$$

at $V \to \infty$ and $a \to 0$ limit (we use local currents).

• We could further change QED weight

$$\begin{split} \mathfrak{G}_{\rho,\sigma,\kappa}^{(2)}(x,y,z) &= \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,y) + \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,y) \\ \text{without changing sum } \sum_{x,y,z} \mathfrak{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}). \end{split}$$

- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(z,z,x) = \mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(y,z,z) = 0$, so short distance $\mathcal{O}(a^2)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x, y, z) is represented by 5 parameters, compute on N^5 grid points and interpolates. (|x y| < 11 fm).

Results, QED case, Finite Volume Error

- QED weight : QED_L (purple diamond), QED_{∞} without subtraction (green plus), with subtraction (blue square)
- Curves correspond to expected finite volume scaling $(0.371 + k/L^2)$ and infinite volume scaling $(0.371 + ke^{-mL})$, where the coefficient k is chosen to match the data at mL = 4.8.
- The right most point for the finite volume weighting function lies a bit off its scaling curve because the discretization error has not been completely removed, and the coefficient k does not contain any possible volume dependence.

$(g-2)_{\mu}$ SM Theory vs experiment

• QED, EW, Hadronic contributions

K. Hagiwara et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003 $a_{\mu}^{\rm SM} =$ $) \times 10^{-10}$ $(11 \ 659 \ 182.8 \ \pm 4.9)$ $\times 10^{-10}$ (11)658 471.808 ± 0.015 $a^{\rm EW}$ 15.4 ± 0.2 $a^{\rm had,LOVP}$ $\times 10^{-10}$ 694.91 +4.27ahad, HOVP -9.84 ± 0.07 $a^{
m had,lbl}$ $\times 10^{-10}$ 10.5 ± 2.6 $a_{\mu}^{\rm SM} = 28.8(6.3)_{\rm exp}(4.9)_{\rm SM} \times 10^{-10}$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC
- Our Goal : sub 1% accuracy for HVP, and \rightarrow 10% accuracy for HLbL

QED box in QCD box (contd.)

Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV

• $(16)^3 = (1.8 \text{ fm})^3 \text{ QCD box in } (24)^3 = (2.7 \text{ fm})^3 \text{ QED box}$

physical M_{π} =140 MeV cHLbL result [Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

- $V=(5.5 \text{ fm})^3$, a = 0.11 fm, $m_{\mu}=106 \text{ MeV}$, 69 conf [RBC/UKQCD]
- Two stage AMA (2000 eigV, 200CG and 400 CG) using zMobius, ~4500 meas/conf

 $a_{\mu}^{\text{LbL, con}} = (0.0926 \pm 0.0077) \times \left(\frac{\alpha}{\pi}\right)^3 = (11.60 \pm 0.96) \times 10^{-10}, \text{ (preliminary, stat err_1only)}$

Disconnected diagrams in HLbL

Disconnected diagrams

Continuum Infinite Volume (a.k.a HVP way) $a_{\mu}^{\text{HVP}} = \sum w(t) C$

$$V^{\mathrm{P}} = \sum_{t} w(t)C(t), \quad w(t) \propto t^{4} \cdots$$

 One could also use infinite volume/continuum lepton&photon diagram in coordinate space

[J. Green et al. Mainz group, LAT16 proceedings]

 $\mathcal{L}_{\mu\nu\lambda\sigma\rho}(x,y;p)_{\sigma'}$

 Techniques in continuum model calculation [Knect Nyffeler 2002; Jegerlehner Nyffeler 2009]: angle average over muon momentum, and carry out angle of two virtual photons

0. v

Χ,μ

Direct 4pt calculation for selected kinematical range

[J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003(2015)]

- Compute connected contribution of 4 pt function in momentum space
- Forward amplitudes related to *(Q1) *(Q2) -> hadron cross section via dispersion relation

 $\mathcal{M}_{\text{had}} \left(\gamma^*(Q_1) \gamma^*(Q_2) \to \gamma^*(Q_1) \gamma^*(Q_2) \right)$ $\leftrightarrow \quad \sigma_{0,2} \left(\gamma^*(Q_1) \gamma^*(Q_2) \to \text{had.} \right)$

- solid curve: model prediction
- π0 exchange is seen to be not dominant, possibly due to heavy quark mass in the simulation (Mπ = 324 MeV)
- disconnected quark diagram loop in progress in 2016

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\rm TT}$ at a fixed virtuality $Q_1^2 = 0.377 {\rm GeV}^2$, as a function of the other photon virtuality Q_2^2 , for different values of ν . The curves represent the predictions based on Eq. (10), see the text for details 114
Dispersive approach for HLbL

[Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014]

 Using crossing symmetry, gauge invariance, 138 form factors are reduced 12 relevant for HLbL

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}} \frac{1}{(p+q_{1})^{2}-m_{\mu}^{2}} \frac{1}{(p-q_{2})^{2}-m_{\mu}^{2}} \\ \times \sum_{j=1}^{12} \xi_{j} \hat{T}_{i_{j}}(q_{1},q_{2};p) \hat{\Pi}_{i_{j}}(q_{1},q_{2},-q_{1}-q_{2}),$$

π0, , ' exchange, pion-loop (exactly scalar QED with pion Form factor)

other contribution is neglected

Measurement of decay positron

Uniform B-field

Experimental Technique

[Slide from L. Roberts]

[T. Blum PRL91 (2003) 052001]

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $K^2 = -q^2 > 0$
- Vector current 2pt function

$$a_{\mu} = \frac{g-2}{2} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dK^2 f(K^2) \hat{\Pi}(K^2) \quad \Pi^{\mu\nu}(q) = \int d^4x e^{iqx} \langle J^{\mu}(x) J^{\nu}(0) \rangle$$

Low Q2, or long distance, part of Π (Q2) is relevant for g-2

Current conservation, subtraction, and coordinate space representation

Current conservation => transverse tensor

$$\sum e^{iQx} \langle J_{\mu}(x) J_{\nu}(0) \rangle = (\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu})\Pi(Q^2)$$

Coordinate space vector 2 pt Green function C(t) is directly related to subtracted Π(Q2) [Bernecker-Meyer 2011, ...]

$$\Pi(Q^2) - \Pi(0) = \sum_{t} \left(\frac{\cos(qt) - 1}{Q^2} + \frac{t^2}{2} \right) C(t)$$

g-2 value is also related to C(t) with know kernel w(t) from QED.

RBC/UKQCD Chiral Lattice quark DWF physical point Quark Propagator Low Mode (A2A) using All-Mode Averaging (AMA)

(plan B) Interplay between Lattice and Experiment

- Check consistency between Lattice and R-ratio
- Short distance from Lattice, Long distance from R-ratio : error <= 1 % at t_{lat/exp} = 2fm

2016 : Disconnected, charm, QED, isospin breaking effects are being included (RBC/UKQCD C. Lehner et al, also other collaborations)

Anomalous magnetic moment

Fermion's energy in the external magnetic field:

$$V(x) = -\vec{\mu}_l \cdot \vec{B}$$

Magnetic moment and spin g_l: Lande g-factor g_l's deviation from tree level value, 2:

$$\vec{\mu}_l = g_l \frac{e}{2m_l} \vec{S}_l$$
 $a_l = \frac{g_l - 2}{2}$

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m_l} F_2(q^2)$$

After quantum correction
$$\Rightarrow a_l = F_2(0)$$

Conserved current & moment method

[conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

■ [moment method, q2→0] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, q->0 limit value is directly computed via the first moment of the relative coordinate, xop - (x+y)/2, one could show $\begin{cases} x_{m}, \mu \\ x_{m}, \mu \end{cases}$

$$\frac{\partial}{\partial q_i} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{x,y,z,x_{\rm op}} (x_{\rm op} - (x+y)/2)_i \times \underbrace{x_{\rm src}}_{x_{\rm src}} \underbrace{y',\sigma'}_{y',\sigma'} \underbrace{z',\nu'}_{z',\nu'} \underbrace{x',\rho'}_{x',\rho'} \underbrace{x_{\rm snk}x_{\rm src}}_{x_{\rm snk}x_{\rm src}} \underbrace{y',\sigma'}_{y',\sigma'} \underbrace{z',\nu'}_{z',\nu'} \underbrace{x',\rho'}_{x',\rho'} \underbrace{x_{\rm snk}x_{\rm src}}_{x_{\rm snk}x_{\rm src}}$$

to directly get $F_2(0)$ without extrapolation.

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$
 122

M_{π} =170 MeV cHLbL result (contd.)

"Exact" ... q = 2pi / L,

"Conserved (current)" ... q=2pi/L, 3 diagrams "Mom" ... moment method q->0, with AMA

$F_2/(\alpha/\pi)^3$	$N_{\rm conf}$	$N_{ m prop}$	$\sqrt{\operatorname{Var}}$	$r_{\rm max}$	SD	LD	ind-pair
0.0693(218)	47	$58 + 8 \times 16$	2.04	3	-0.0152(17)	0.0845(218)	0.0186
0.1022(137)	13	$(58 + 8 \times 16) \times 7$	1.78	3	0.0637(34)	0.0385(114)	0.0093
0.0994(29)	23	$(217 + 512) \times 2 \times 4$	1.08	5	0.0791(18)	0.0203(26)	0.0028
0.0060(43)	23	$(10+48) \times 2 \times 4$	0.44	2	0.0024(6)	0.0036(44)	0.0045
0.1054(54)	23						
	$F_2/(\alpha/\pi)^3$ 0.0693(218) 0.1022(137) 0.0994(29) 0.0060(43) 0.1054(54)	$F_2/(\alpha/\pi)^3$ $N_{\rm conf}$ 0.0693(218)470.1022(137)130.0994(29)230.0060(43)230.1054(54)23	$F_2/(\alpha/\pi)^3$ N_{conf} N_{prop} 0.0693(218)47 $58 + 8 \times 16$ 0.1022(137)13 $(58 + 8 \times 16) \times 7$ 0.0994(29)23 $(217 + 512) \times 2 \times 4$ 0.0060(43)23 $(10 + 48) \times 2 \times 4$ 0.1054(54)23	$F_2/(\alpha/\pi)^3$ $N_{\rm conf}$ $N_{\rm prop}$ $\sqrt{\rm Var}$ 0.0693(218)47 $58 + 8 \times 16$ 2.040.1022(137)13 $(58 + 8 \times 16) \times 7$ 1.780.0994(29)23 $(217 + 512) \times 2 \times 4$ 1.080.0060(43)23 $(10 + 48) \times 2 \times 4$ 0.440.1054(54)23	$F_2/(\alpha/\pi)^3$ N_{conf} N_{prop} \sqrt{Var} r_{max} $0.0693(218)$ 47 $58 + 8 \times 16$ 2.04 3 $0.1022(137)$ 13 $(58 + 8 \times 16) \times 7$ 1.78 3 $0.0994(29)$ 23 $(217 + 512) \times 2 \times 4$ 1.08 5 $0.0060(43)$ 23 $(10 + 48) \times 2 \times 4$ 0.44 2 $0.1054(54)$ 23	$F_2/(\alpha/\pi)^3$ N_{conf} N_{prop} \sqrt{Var} r_{max} SD0.0693(218)47 $58 + 8 \times 16$ 2.04 3 $-0.0152(17)$ 0.1022(137)13 $(58 + 8 \times 16) \times 7$ 1.78 3 $0.0637(34)$ 0.0994(29)23 $(217 + 512) \times 2 \times 4$ 1.08 5 $0.0791(18)$ 0.0060(43)23 $(10 + 48) \times 2 \times 4$ 0.44 2 $0.0024(6)$ 0.1054(54)23 23 $10 + 48 \times 2 \times 4$ 0.44 2 $0.0024(6)$	$F_2/(\alpha/\pi)^3$ N_{conf} N_{prop} \sqrt{Var} r_{max} SDLD0.0693(218)47 $58 + 8 \times 16$ 2.043 $-0.0152(17)$ $0.0845(218)$ 0.1022(137)13 $(58 + 8 \times 16) \times 7$ 1.78 3 $0.0637(34)$ $0.0385(114)$ 0.0994(29)23 $(217 + 512) \times 2 \times 4$ 1.08 5 $0.0791(18)$ $0.203(26)$ 0.0060(43)23 $(10 + 48) \times 2 \times 4$ 0.44 2 $0.0024(6)$ $0.0036(44)$ 0.1054(54)23 $(217 + 512) \times 2 \times 4$ 0.44 2 $0.0024(6)$ $0.0036(44)$

Direct 4pt calculation for selected kinematical range

[J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003(2015)]

- Compute connected contribution of 4 pt function in momentum space
- Forward amplitudes related to *(Q1) *(Q2) -> hadron cross section via dispersion relation

 $\mathcal{M}_{\text{had}} \left(\gamma^*(Q_1) \gamma^*(Q_2) \to \gamma^*(Q_1) \gamma^*(Q_2) \right)$ $\leftrightarrow \quad \sigma_{0,2} \left(\gamma^*(Q_1) \gamma^*(Q_2) \to \text{had.} \right)$

- solid curve: model prediction
- π0 exchange is seen to be not dominant, possibly due to heavy quark mass in the simulation (Mπ = 324 MeV)
- disconnected quark diagram loop in progress in 2016

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\rm TT}$ at a fixed virtuality $Q_1^2 = 0.377 {\rm GeV}^2$, as a function of the other photon virtuality Q_2^2 , for different values of ν . The curves represent the predictions based on Eq. (10), see the text for details 124

Dispersive approach for HLbL

[Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014]

 Using crossing symmetry, gauge invariance, 138 form factors are reduced 12 relevant for HLbL

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}} \frac{1}{(p+q_{1})^{2}-m_{\mu}^{2}} \frac{1}{(p-q_{2})^{2}-m_{\mu}^{2}} \\ \times \sum_{j=1}^{12} \xi_{j} \hat{T}_{i_{j}}(q_{1},q_{2};p) \hat{\Pi}_{i_{j}}(q_{1},q_{2},-q_{1}-q_{2}),$$

π0, , ' exchange, pion-loop (exactly scalar QED with pion Form factor)

other contribution is neglected

Continuum Infinite Volume (a.k.a HVP way) $a_{\mu}^{\text{HVP}} = \sum w(t) C$

$$V^{\mathrm{P}} = \sum_{t} w(t)C(t), \quad w(t) \propto t^{4} \cdots$$

 One could also use infinite volume/continuum lepton&photon diagram in coordinate space

[J. Green et al. Mainz group, LAT16 proceedings]

 $\mathcal{L}_{\mu\nu\lambda\sigma\rho}(x,y;p)_{\sigma'}$

 Techniques in continuum model calculation [Knect Nyffeler 2002; Jegerlehner Nyffeler 2009]: angle average over muon momentum, and carry out angle of two virtual photons

0. v

Χ,μ

$$L(x_1, x_2) = \sum_{m,l} \sum_{\substack{k=|l-m| \\ \text{step=2}}}^{l+m} (-1)^k C_k(\hat{x}_1 \hat{x}_2)$$

$$\times \int dQ_1 dQ_2 \frac{4Z_1 Z_2}{m^2 Q_1 Q_2 X_1 X_2} \frac{(-Z_1 Z_2)^l}{l+1} J_{k+1}(Q_1 X_1) J_{k+1}(Q_2 X_2)$$

$$\times \left[\frac{\theta(1 - Q_2/Q_1)}{Q_1^2} \left(\frac{Q_2}{Q_1} \right)^m + \frac{\theta(1 - Q_1/Q_2)}{Q_2^2} \left(\frac{Q_1}{Q_2} \right)^m \right]$$

Can Lattice produce a counter part ? [J. Bijnens]

• Which momentum regimes important studied: JB and

J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

•
$$a_{\mu} = \int dl_1 dl_2 a_{\mu}^{LL}$$
 with $l_i = \log(P_i/GeV)$

Which momentum regions do what: volume under the plot $\propto a_{\mu}$

(plan B) Interplays between lattice and dispersive approach g-2

- R-Ratio error ~ 0.6%, HPQCD error ~ 2%
- Goal would be ~ 0.2 %
- Dispersive approach from R-ratio R(s)

 $\hat{\Pi}(Q^2) = \frac{Q^2}{3} \int_{s_0} ds \frac{R(s)}{s(s+Q^2)}$

also [ETMC, Mainz, ...]

- Can we combine dispersive & lattice and get more precise (g-2)HVP than both ? [2011 Bernecker Meyer]
- Inverse Fourier trans to Euclidean vector correlator
- Relevant for g-2 $Q^2 = (m_{\mu}/2)^2 = 0.0025 \text{ GeV}^2$
- It may be interesting to think $\hat{\Pi}(Q^2)$

$$a_{\mu}^{\rm HVP} = \sum_{t} w(t)C(t), \quad w(t) \propto t^4 \cdots$$

$$\hat{\Pi}(Q^2) = \frac{Q^2}{3} \int_{s_0} ds \frac{R(s)}{s(s+Q^2)}$$

 $\frac{\hat{\Pi}(Q^2)}{Q^2} = \left[\frac{\hat{\Pi}(Q^2)}{Q^2} - \frac{\hat{\Pi}(P^2)}{P^2}\right]^{\text{Exp}} + \left[\frac{\hat{\Pi}(P^2)}{P^2}\right]^{\text{La}}$

Black : R-ratio , alpha QED (Jegerlehner) Red : Lattice (DWF)

AMA+MADWF(fastPV)+zMobius accelerations

 We utilize complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], zMobius, for a better approximation of the sign function.

$$\epsilon_L(h_M) = \frac{\prod_s^L (1 + \omega_s^{-1} h_M) - \prod_s^L (1 - \omega_s^{-1} h_M)}{\prod_s^L (1 + \omega_s^{-1} h_M) + \prod_s^L (1 - \omega_s^{-1} h_M)}, \quad \omega_s^{-1} = b + c \in \mathbb{C}$$

1/a~2 GeV, Ls=48 Shamir ~ Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s complex varying) ~5 times saving for cost AND memory

Ls	eps(48cube) – eps(zMobius)
6	0.0124
8	0.00127
10	0.000110
12	8.05e-6

The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

sym2:
$$1 - \kappa_b M_4 M_5^{-1} \kappa_b M_4 M_5^{-1}$$

- Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D [Edward, Heller]
- All in all, sloppy solve compared to the traditional CG is <u>160 times</u> faster on the physical point 48 cube case. And ~<u>100 and 200 times</u> for the 32 cube, Mpi=170 MeV, 140, in this proposal (1,200 eigenV for 32cube).

Examples of Covariant Approximations (contd.)

All Mode Averaging AMA Sloppy CG or Polynomial approximations $\mathcal{O}^{(\mathrm{appx})} = \mathcal{O}[S_l],$ $S_l = \sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger},$ $f(\lambda) = \begin{cases} \frac{1}{\lambda}, & |\lambda| < \lambda_{\rm cut} \\ P_n(\lambda) & |\lambda| > \lambda_{\rm cut} \end{cases}$ $P_n(\lambda) \approx \frac{1}{\lambda}$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

- low mode part : # of eig-mode
- mid-high mode : degree of poly.

QED calculations

Fine structure constant
 Experimental input : anomalous magnetic moment of Electron
 a_e = 0.001 159 652 180 73(28) [0.24 ppb]
 [Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011)]

Theory input: 10th order QED calculation (+ small had+EW) [Aoyama, Hayakawa, Kinoshita, Nio Phys. Rev. D 91, 033006 (2015)] ⁻¹ = 137.035 999 1570 (334) [0.25 ppb]

Schwinger term $= \frac{\alpha}{2\pi} = 0.0011614...$

1+7+72+891+12,672 more than 13,000 diagrams !

(a)()()(m)(m) \overline{m} ()(TA) (AD) (\overline{A}) (Δ) (fm) ത്തി $(\pi - \pi)$ 6 m (A) (π) 602 (Δ) tran (\mathcal{T}) (\overline{a}) (Fm) (TAM) tan $\widehat{}$ (m) (fa) (m)A Com (m) (f_{a}) (A) (m) $((\Delta))$ Land tonal (m)(Tran) $(\mathcal{T}_{\mathcal{T}})$ <u>to an</u> (a) $\widehat{}$ (m)()(A) tran (A) 6 (\mathcal{A}) ക്ക (A) (Com) (a)600 tron ഷത്ത (from) $(\widehat{\mathbf{a}})$ the (mm) (\bigcirc) (for) 600) 60 (π) ()((a)) $\overline{}$ (A) = (A + A) = (A + A)A (a) (Δ) ton (a)tom (\bigcirc) (\overline{a}) (m)(AA) ഹ്തി (π) (a)tran (m)(D) 1 (\mathcal{A}) 66 ff m Am (C) (f_{Δ}) \mathcal{M} (\mathcal{A}) that ക്ക (π) ഹ്തി ക്രി $\left(\widehat{} \right)$ ക്കി Con (A) A) (the second (\bigcirc) (m) (mm) (To) (A) (ATA) the $\left(\right)$ (And) (m)(Kr)) (A) (\mathcal{A}) $(\mathcal{A},\mathcal{A})$ (A) $(m \otimes)$ (A) (m) (\mathcal{A}) (m)ക്രി (a)(TA) (TAN)

$(g-2)_{\mu}$ SM Theory vs experiment

• QED, EW, Hadronic contributions

K. Hagiwara et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003 $a_{\mu}^{\rm SM} =$ $) \times 10^{-10}$ $(11 \ 659 \ 182.8 \ \pm 4.9)$ $\times 10^{-10}$ (11)658 471.808 ± 0.015 $a^{\rm EW}$ 15.4 ± 0.2 $a^{\rm had,LOVP}$ $\times 10^{-10}$ 694.91 +4.27ahad, HOVP -9.84 ± 0.07 $a^{
m had,lbl}$ $\times 10^{-10}$ 10.5 ± 2.6 $a_{\mu}^{\rm SM} = 28.8(6.3)_{\rm exp}(4.9)_{\rm SM} \times 10^{-10}$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC
- Our Goal : sub 1% accuracy for HVP, and \rightarrow 10% accuracy for HLbL

G-2 from BSM sources

Typical new particle contribute g-2 g-2 ~ C (m_µ / m_{NP})²

To explain current discrepancy

${\mathcal C}$	1	$\frac{\alpha}{\pi}$	$\left(\frac{\alpha}{\pi}\right)^2$
$M_{\rm NP}$	$2.0^{+0.4}_{-0.3}~{ m TeV}$	$100^{+21}_{-13}~{ m GeV}$	$5^{+1}_{-1}~{ m GeV}$

- SUSY (scalar-lepton)
- 2 Higgs doublet models
 Type-X,
- Dark photons from kinematical mixings F_µ F[']_µ

From: F. Curciarello, FCCP15, Capri, September 2015

The Muon g-2 experiments **BNL E821 (-2004)**

measure precession of muon spin very accurately

 $N(t) = N_0(E) \exp\left(-t/\gamma \tau_{\mu}\right) \left[1 + A(E) \sin(\omega_a t + \phi(E))\right]$

[BNL web page, g-2 collaboration]

60

80

Time modulo 100µs [µs]

100

Recipe of a g-2 measurement

- Prepare a polarized muon beam from P-violating pion decay
- Store in a magnetic field (let muon spin precessed)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Magic momentum, γ =30 (p= 3 GeV/c),

2. Measure positron from Pviolating muon decay

[Slide from T. Mibe, L. Roberts]

Positron time spectrum in BNL E821

Slide by P. Winter (ANL)

Shimming successfully completed in2016

- 10 months of align and optimize our shim knobs:
 - 72 pole pieces
 - 800 wedge shims
 - 9000 iron shim foils

Shimming goal achieved with $\Delta B < \pm 25$ ppm \checkmark

Sub-percent accuracy on Physical point

• now adding <u>on-physical point (M_{π} =135 MeV)</u>, 2 lattice spacing $a^{-1} = 1.7$ and 2.4 GeV, V~(5.5 fm)³ !

[R. Mawhinney]

$\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi \text{ matrix elements}$

- Vary time separation between H_W and $\pi\pi$ operator.
- Show data for all $K H_W$ separations $t_Q t_K \ge 6$ and $t_{\pi\pi} - t_K = 10, 12, 14, 16$ and 18.
- Fit correlators with $t_{\pi\pi} t_Q \ge 4$
- Obtain consistent results for $t_{\pi\pi}$ $t_Q \ge 3$ or 5

SM value of $\operatorname{Re}(\varepsilon'/\varepsilon)$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$$
$$= (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$$
$$\operatorname{Expt:} = (16.6 \pm 2.3) \times 10^{-4} \qquad [2.1 \ \sigma \text{ difference}]$$

- Im(A_0), Im(A_2), δ_0 and δ_2 from lattice QCD
- $\operatorname{Re}(A_2)$ and $\operatorname{Re}(A_0)$ from measured decay rates
- $|\varepsilon| = 2.228(0.011) \times 10^{-3}$ from experiment
- $\arg(\varepsilon) = \arctan(2\Delta M_K/\Gamma_S) = 42.52^\circ$ (Bell-Steinberger relation)
- determined from phenomenology changes '/ very small amount

Examples of Covariant Approximations (contd.)

All Mode Averaging AMA Sloppy CG or Polynomial approximations $\mathcal{O}^{(\mathrm{appx})} = \mathcal{O}[S_l],$ $S_l = \sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger},$ $f(\lambda) = \begin{cases} \frac{1}{\lambda}, & |\lambda| < \lambda_{\rm cut} \\ P_n(\lambda) & |\lambda| > \lambda_{\rm cut} \end{cases}$ $P_n(\lambda) \approx \frac{1}{\lambda}$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

low mode part : # of eig-mode
mid-high mode : degree of poly.