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SM Theory

n QED, hadronic, EW contributions
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QED   (5-loop)
Aoyama et al. 
PRL109,111808 (2012) 

Hadronic vacuum 
polarizaEon (HVP)

Hadronic light-by-light 
(Hlbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

+ + …

+ + + …

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.
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Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.

PoS(LAT2005)353

353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ
! �µ(q) =

✓
�µ F1(q

2) +
i �µ⌫ q⌫
2m

F2(q
2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵

2⇡
= 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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(g-2)μ SM Theory  vs  experiment

QED, EW, Hadronic contributionsn

Discrepancy between EXP and SM is larger than EW!n

Currently the dominant uncertainty comes from n HVP, followed by HLbL

x4 or more accurate experiment  FNAL , Jn -PARC
Our Goal :  sub 1% accuracy for HVP, and n

→ 10% accuracy for HLbL

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003
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Two-Higgs Doublet Model

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

µR µLµL

H1

µR µLµL

H1 γ

τ

×⟨H1⟩

∼
y2µ

16π2

m2
µ

M2
H

∼
y2τ

16π2

α

4π

m2
µ

M2
H

Leading!

2HDM type X could be the origin of the observed (30 ± 8)× 10−10

deviation if, e.g., MA ∼ 50 GeV, tanβ ∼ 100!

Dominik Stöckinger Muon (g − 2) Precise and reliable predictions in the 2HDM 4/17

G-2  from BSM sources

12

n Typical new particle contribute g-2   
g-2  ~ C  (mµ / mNP)2

n To explain current discrepancy

n SUSY (scalar-lepton )
n 2 Higgs doublet models 

Type-X, ….
n Dark photons 

from kinematical mixings
� F�� F���

New Physics contributions to the muon g � 2

Define:

�aµ = aexp
µ � aSM

µ = (290± 90)⇥ 10�11 (Jegerlehner, AN ’09)

Absolute size of discrepancy is actually unexpectedly large, compared to weak
contribution (although there is some cancellation there):

aweak
µ = aweak, (1)

µ (W ) + aweak, (1)
µ (Z) + aweak, (2)

µ

= (389� 194� 41)⇥ 10�11

= 154⇥ 10�11

Assume that New Physics contribution with MNP � mµ decouples:

aNP
µ = C

m2
µ

M2
NP

where naturally C = ↵
⇡ , like from a one-loop QED diagram, but with new

particles. Typical New Physics scales required to satisfy aNP
µ = �aµ:

C 1 ↵
⇡ (↵⇡ )

2

MNP 2.0+0.4
�0.3 TeV 100+21

�13 GeV 5+1
�1 GeV

Therefore, for New Physics model with particles in 250� 300 GeV mass range
and electroweak-size couplings O(↵), we need some additional enhancement
factor, like large tan� in the MSSM, to explain the discrepancy �aµ.

aµ: Supersymmetry
Supersymmetry for large tan�, µ > 0:

a
SUSY
µ ⇡ 123⇥ 10�11

✓
100 GeV

MSUSY

◆2

tan�

(Czarnecki, Marciano, 2001) ⌫̃

�̃ �̃

a)

�̃
0

µ̃ µ̃

b)

Explains �aµ = 290⇥ 10�11 if MSUSY ⇡ (93� 414) GeV (2 < tan� < 40).

In some regions of parameter space, large 2-loop contributions (2HDM):

h,Aµ

�

h,A �

⌧, b

µ µ

�

W
H

µ
⌫µ

�

W

H
µ

Z

�a) b) c) d)

Barr-Zee diagram (b) yields enhanced contribution, which can exceed 1-loop result.
Enhancement factor m2

b
/m2

µ compensates suppression by ↵/⇡

((↵/⇡)⇥ (m2
b
/m2

µ) ⇠ 4 > 1).

aµ and Supersymmetry after first LHC run

• LHC so far only sensitive to strongly interacting supersymmetric particles, like
squarks and gluinos (ruled out below about 1 TeV).

• Muon g � 2 and SUSY searches at LHC only lead to tension in constrained
MSSM (CMSSM) or NUHM1 / NUHM2 (non-universal contributions to Higgs
masses).

• In general supersymmetric models (e.g. pMSSM10 = phenomenological MSSM
with 10 soft SUSY-breaking parameters) with light neutralinos, charginos and
sleptons, one can still explain muon g � 2 discrepancy and evade bounds from
LHC.

[A. Nyfler ]



Status of dark photon searches

Essentially all of the parameter space in the (m�0 , ")-plane to explain the muon
g � 2 discrepancy has now been ruled out.

From: F. Curciarello, FCCP15, Capri, September 2015
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muon anomalous magnetic moment

J-PARC g—2 schematic 

Precision for New Discoveries, June 2016 G. Marshall 23 

resonant laser ionization of 
muonium for low emittance µ+  

(~106 µ+/s) 

3 GeV proton beam 
 ( 333 uA)�

surface muon beam  
(28 MeV/c, »108/s)�

muonium production  
(300 K, 25 meV
2.3 keV/c)�

muon storage ring 
(3T, r = 33 cm, 1 ppm local)�

muon reacceleration 
(Soa, RFQ, IH, DAW, DLS) 

(thermal to 300 MeV/c)�

FNAL  E989  (began 2017-)
move storage ring from BNL
x4 more precise results,  0.14ppm

J-PARC E34
ultra-cold muon beam
0.37 ppm  then 0.1 ppm, also EDM

14

Theory status for aµ – summary

Contribution Value ⇥1010 Uncertainty ⇥1010

QED (5 loops) 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.3 4.2
HVP NLO -9.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.5 4.9
BNL E821 result 11 659 209.1 6.3
FNAL E989/J-PARC E34 goal ⇡ 1.6

We currently observe a ⇠ 3� tension.
2 / 30

BNL g-2  till 2004 :  ~ 3 σ larger than SM prediction



Precession of Mercury and GR

15

discrepancy recognized since 1859

1915   New physics  
GR  revolution

precession of perihelion

[Luchang Jin’s analogy]

College Park, MD 2011 PROCEEDINGS of the NPA  1

The Theory of Mercury’s Anomalous Precession 
Roger A. Rydin 

Associate Professor Emeritus of Nuclear Engineering, University of Virginia 
626 Cabell Avenue, Charlottesville, VA 22903-2011 

e-mail: rarydin@earthlink.net 
 

Urbain Le Verrier published a preliminary paper in 1841 on the Theory of Mercury, and a definitive 
paper in 1859. He discovered a small unexplained shift in the perihelion of Mercury of 39” per century. The 
results were corrected in 1895 by Simon Newcomb, who increased the anomalous shift by about 10%. Albert 
Einstein, at the end of his 1916 paper on General Relativity, gave a specific solution for the perihelion shift 
which exactly matched the discrepancy. Dating from the 1947 Clemence review paper, that explanation and 
precise value have remained to the present time, being completely accepted by theoretical physicists as 
absolutely true. Modern numerical fittings of planetary orbits called Ephemerides contain linearized General 
Relativity corrections that cannot be turned off to see if discrepancies between observation and computation 
still exist of the magnitude necessary to support the General Relativity estimates of the differences. 

The highly technical 1859 Le Verrier paper was written in French. The partial translation given here 
throws light on Le Verrier’s analysis and thought processes, and points out that the masses he used for Earth 
and Mercury are quite different from present day values. A 1924 paper by a professor of Celestial Mechanics 
critiques both the Einstein and the Le Verrier analyses, and a 1993 paper gives a different and better fit to some 
of Le Verrier’s data. Nonetheless, the effect of errors in planet masses seems to give new condition equations 
that do not change the perihelion discrepancy by a large amount. The question now is whether or not the excess 
shift of the perihelion of Mercury is real and has been properly explained in terms of General Relativity, or if 
there are other reasons for the observations. There are significant arguments that General Relativity has not 
been proven experimentally, and that it contains mathematical errors that invalidate its predictions. Vankov has 
analyzed Einstein’s 1915 derivation and concludes that when an inconsistency is corrected, there is no 
perihelion shift at all! 

 

1. Introduction 
In his 1916 paper on General Relativity [1], Albert Einstein 

announced that he had explained the apparent anomalous shift 
in the perihelion of Mercury, discovered by the French 
astrophysicist, Urbain Le Verrier [2, 3] in 1859 and corrected 
slightly by Simon Newcomb [4, 5] in 1895.  As the accompanying 
table shows, the total observed precession of 5600 arc seconds 
per century is made up mostly by a coordinate transformation, 
whereas the calculation of the effects of other planets remains at 
roughly the 1895 values, and Einstein’s correction is taken as a 
real effect that exactly explains the difference. 
 

Amount (arc-
sec/century) 

Cause 

5025.6 Coordinate (due to precession of equinoxes) 
531.4 Gravitational tugs of the other planets 
0.0254 Oblateness of the sun (quadrupole moment) 

42.98±0.04 General relativity 
5600.0 Total 
5599.7 Observed 

Fig. 1.  Sources of the Precession of Perihelion for Mercury 

Fig. 1 is taken from a 1947 paper by Clemence [6], which is 
essentially the definitive analysis of all Mercury data taken up to 
that time. Clemence says, “It is at once evident that the effect can 
be detected most easily in the motion of Mercury.  Indeed, 
Einstein's announcement of the general theory of relativity in its 
definitive form was immediately hailed by some astronomers as 

explaining a previously unaccountable discrepancy between the 
observed and theoretical motions of this planet.  Others were, 
however, intuitively opposed to relativity, and they directed 
attention to a small discrepancy yet remaining as evidence that 
the theory of relativity could not be correct: the relativists 
contended that the small remaining discrepancy was due to 
errors either in the observations or in the classical theory of the 
motion.  In justice it should be said that the questions involved 
are not simple ones, but are complicated by three causes: 

1. Observations of Mercury are among the most difficult in 
positional astronomy.  They have to be made in the daytime, 
near noon, under unfavorable conditions of the atmosphere; 
and they are subject to large systematic and accidental errors 
arising both from this cause and from the shape of the visible 
disk of the planet. 

2. The planet's path in Newtonian space is not an ellipse but an 
exceedingly complicated space-curve due to the disturbing 
effects of all of the other planets.  The calculation of this curve 
is a difficult and laborious task, and significantly different 
results have been obtained by different scientists. 

3. The observations cannot be made in the Newtonian frame of 
reference.  They are referred to the moving equinox, that is, 
they are affected by the precession of the equinoxes, and the 
determination of the precessional motion is one of the most 
difficult problems of positional astronomy, if not the most 
difficult.  In light of all these hazards it is not surprising that a 
difference of opinion could exist regarding the closeness of 
agreement between the observed and theoretical motions.” 

http://worldnpa.org/abstracts/abstracts_6066.pdf

Known physics



Hadronic Vacuum Polarization (HVP) 
contribution to g-2

16

q = p′ − p, ν

p p′

[ Christoph Lehner  et al.  1801.07224 ]



Leading order of hadronic contribution 
(HVP)

Hadronic vacuum polarization (HVP)n

quark’s EM current : 
Optical Theorem n

Analycityn

17

Vμ Vν

Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤tot(e

+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68

[ F. Jegerlehner’s lecture ]



Leading order of hadronic contribution 
(HVP)

n Hadronic vacuum polarization (HVP) 

�

Hagiwara, et al.
J.Phys. G38,085003
(2011)

r w

18



g-2 from R-ratio

2p

,w j
2 GeV<

2 5 GeV-
5 GeV>

2p

,w j
2 GeV<

2 5 GeV-

5 GeV>
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HVP from experimental data

n From experimental e+ e- total cross section  
�total(e+e-) and dispersion relation

time like   q2 = s >= 4 mπ
2

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
1

✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 72

[  ~ 0.6 % err ]

20
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Alex Keshavarzi’s talk at “HVP working group Muon g-2 Theory Initiative” @ KEK

LO HVP :  error   2.54 x10-10 [ 0.37% ]

full covariance matrix will be public soon

Results KNT18 update

KNT18 aSMµ update

2011 2017

QED 11658471.81 (0.02) �! 11658471.90 (0.01) [arXiv:1712.06060]

EW 15.40 (0.20) �! 15.36 (0.10) [Phys. Rev. D 88 (2013) 053005]

LO HLbL 10.50 (2.60) �! 9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]

NLO HLbL 0.30 (0.20) [Phys. Lett. B 735 (2014) 90]

————————————————————————————————————————
HLMNT11 KNT18

LO HVP 694.91 (4.27) �! 693.27 (2.46) this work

NLO HVP -9.84 (0.07) �! -9.82 (0.04) this work
————————————————————————————————————————
NNLO HVP 1.24 (0.01) [Phys. Lett. B 734 (2014) 144]

————————————————————————————————————————

Theory total 11659182.80 (4.94) �! 11659182.05 (3.56) this work

Experiment 11659209.10 (6.33) world avg

Exp - Theory 26.1 (8.0) �! 27.1 (7.3) this work
————————————————————————————————————————
�aµ 3.3� �! 3.7� this work

Alex Keshavarzi (UoL) ahad, VP
µ from KNT18 12th February 2018 19 / 22
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Results KNT18 update

KNT18 aSMµ update

Alex Keshavarzi (UoL) ahad, VP
µ from KNT18 12th February 2018 20 / 22
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g-2 HVP Workshop, KEK 13/02/2018 25

• BABAR and KLOE measurements most precise to date, but 
in poor agreement

• Others are in between, but not precise enough to decide

• No progress achieved in understanding the reason(s) of the 
discrepancy

• consequence: accuracy of combined results degraded

• imperative to improve accuracy of prediction (forthcoming 
g-2 results at FNAL, J-PARC)

• Other efforts at VEPP-2000 underway

• Design a new independent BABAR analysis

M. Davier  ISR BABAR g-2

The BABAR/KLOE discrepancy for ppg(g)

Idea  :   Cross check,  combine, and improve by LQCD data  



Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣↵
⇡

⌘2
Z 1

0

dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Qi  ̄(x)�
µ (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice�

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 

n  Vector current  2pt function 
 

 

n  Low Q2, or long distance, part of �(Q2)  is   relevant for g-2 

  

 

 

 

	�

[	T.	Blum	PRL91	(2003)	052001	]�
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Simulation details [RBC/UKQCD 2015]

two gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

• pion mass m⇡ = 139.2(2) and 139.3(3) MeV (m⇡L <⇠ 4)

• lattice spacings a = 0.114 and 0.086 fm

• lattice scale a
�1 = 1.730 and 2.359 GeV

• lattice size L/a = 48 and 64

• lattice volume (5.476)3 and (5.354)3 fm3

Use all-mode-average (AMA) [Blum et al 2012] and low-mode- averaging (LMA)
[Giusti et al, 2004, Degrand et al 2005, Lehner 2016 for HVP] techniques for improved
statistics by more than three orders of magnitudes compared to basic CG, and
⇥10 smaller memory via multigrid-Lanczos [Lehner 2017] .

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 8



Nf=2+1 DWF QCD ensemble 
at physical quark mass

26

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

m
p 

L

a2 / fm2

Iwasaki
Iwasaki + DSDR

Iwasaki (Planned)

48 I64 I
24ID

32 ID

48 ID

1/a=1 GeV1/a=1.73 GeV1/a=2.36 GeV



27

Euclidean Time Momentum Representation
[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum,
~p = 0 :

C(t) =
1

3

X

x,i

hji(x)ji(0)i

g-2 HVP contribution is

a
HV P
µ =

P
t w(t)C(t)

w(t) = 2
R 1
0

d!
! fQED(!2)

h
cos !t�1

!2 + t2

2

i

• Subtraction ⇧(0) is performed.
Noise/Signal ⇠ e

(E⇡⇡�m⇡)t, is improved [Lehner et al. 2015] .

• Corresponding ⇧̂(Q2) has exponentially small volume er-
ror [Portelli et al. 2016] . w(t) includes the continuum QED
part of the diagram

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 5

w(t) ~ t4



DWF light HVP  [ 2016 Christoph Lehner ]
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Significant error reduction using full-volume low-mode average
(DeGrand & Schäfer 2004) in addition to a multi-level all-mode average.

New method: Multi-Grid Lanczos utilizing local coherence of eigenvectors
yields 10⇥ reduction in memory cost (Poster by C.L. at Lattice 2017)

9 / 30

120 conf (a=0.11fm), 80 conf (a=0.086fm)   physical point Nf=2+1 Mobius DWF  
4D full volume LMA with 2,000  eigen vector  (of e/o preconditioned zMobius D+D)
EV compression (1/10 memory) using local coherence [ C. Lehner Lat2017 Poster ]
In addition,  50 sloppy / conf via multi-level AMA 
more than x 1,000  speed up compared to  simple CG
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Euclidean time correlation from e
+
e

�
R(s) data

From e
+
e

�
R(s) ratio, using disparsive relation, zero-spacial momentum

projected Euclidean correlation function C(t) is obtained

⇧̂(Q2) = Q
2

Z 1

0
ds

R(s)

s(s + Q2)

C
R-ratio(t) =

1

12⇡2

Z 1

0

d!

2⇡
⇧̂(!2) =

1

12⇡2

Z 1

0
ds

p
sR(s)e�

p
st

• C(t) or w(t)C(t) are directly comparable to Lattice re-
sults with the proper limits (mq ! m

phys
q , a ! 0, V ! 1,

QED ...)

• Lattice: long distance has large statistical noise, (short
distance: discretization error, removed by a ! 0 and/or
pQCD )

• R-ratio : short distance has larger error

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 6
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⇧̂(Q2) = Q
2
R 1
0 ds

R(s)
s(s+Q2)

Re(s)

Im(s)
pQCD OPE R(s)

poles 1/s(s + Q2)

1

(1/a = 1.78 GeV, Relative statistical error)

(plan	B)	Interplays	between	la1ce	and	
dispersive	approach		g-2�

•  R-Ra<o	error		~	0.6%,	HPQCD	error	~	2%	
•  Goal	would	be	~0.25	%	
•  Dispersive	approach	from	R-ra<o		R(s)	
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Comparison of R-ratio and Lattice
[ F. Jegerlehner alphaQED 2016 ]

n Covariance matrix among energy bin in R-ratio 
is not available, assumes 100% correlated 

31

Comparison to R-ratio

u + d + s
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Lattice more precise at small T , R ratio at high

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 13
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Comparison with R(s) of certain range

Near ⇢ peak, KLOE and Babar disagree
Hagiwara et al. 2011:
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Figure 4: Normalised di�erence between the data sets based on radiative return from KLOE
[3, 4] and BaBar [5] and the fit of all data in the 2� channel, as indicated on the plot. The (lilac)

band symmetric around zero represents the error band of the fit given by the diagonal elements
of the fit’s covariance matrix, with local error inflation as explained in the text, whereas the

light (yellow) band indicates the error band of the fit without inflation.
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µ is the 2� contribution in the range 0.305 <

p
s < 2 GeV.

biases, due to varying the underlying model for the cross section are negligible.7 However,

there is a remaining dependence on the way the data are binned. For the current analysis,

7As we have checked and discussed in [2], our simple assumption of a piecewise constant cross section in the
energy bin and simple trapezoidal integration are well justified.
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BESIII 2015 update:
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 3.3± 2.5 ±368.2 

Figure 7: Our calculation of the leading-order (LO) hadronic vacuum polarization 2⇡ contributions to
(g � 2)µ in the energy range 600 - 900 MeV from BESIII and based on the data from KLOE 08 [6], 10 [7],
12 [8], and BaBar [10], with the statistical and systematic errors. The statistical and systematic errors are
added quadratically. The band shows the 1� range of the BESIII result.
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(Hagiwara, et.al) BESIII

Careful comparison of R-ratio with lattice results may help
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Problematic experimental region can readily be replaced by precise
lattice data. Lattice also can be arbiter regarding di�erent
experimental data sets.
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Combine R-ratio and Lattice

n Use short and long  distance from R-ratio using smearing function, and 
mid-distance from lattice

34

We can also select a window in t by defining a smeared ⇥ function:
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This allows us to devise a “Window method”:

aµ =
X

t

wtC (t) ⌘ a
SD
µ + a

W
µ + a

LD
µ

with

a
SD
µ =

X

t

C (t)wt [1 � ⇥(t, t0, �)] ,

a
W
µ =

X

t

C (t)wt [⇥(t, t0, �) � ⇥(t, t1, �)] ,

a
LD
µ =

X

t

C (t)wt⇥(t, t1, �)

and each contribution accessible from both lattice and R-ratio
data.
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We can also select a window in t by defining a smeared ⇥ function:
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Example contribution to a
W
µ with t0 = 0.4 fm, t1 = 1.5 fm,

� = 0.15 fm:
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Continuum limit of aW

Continuum limit of aW
µ from our lattice data; below t0 = 0.4 fm

and � = 0.15 fm
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Introduction
Result

Summary and Perspective

Long Distance Mng. for Light/Disc. Correlators
Continuum Extrapolation
Corrections: Perturb, FV, and Isospin Breaking

Continuum Extrap. of Light Component: aLO-HVP
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.

aLO-HVP
µ,ud = 634.11(8.10)(8.24) , �2/d.o.f. = 7.8/12 (fit1 case).

Kohtaroh Miura (CPT, Aix-Marseille Univ.) Lattice 2017, Granada, 22 Jun 2017

RBC/UKQCD  [C. Lehner Lat17 ]

c.f BMWc [K. Miura  Lat17 ]

Continuum extrapolation is mild



disconnected quark loop contribution �

n  [ C. Lehner et al. (RBC/UKQCD 2015,  arXiv:1512.09054,  PRL) ] 

n  Very challenging calculation due to statistical noise  

n  Small contribution,  vanishes in SU(3) limit,  

    Qu+Qd+Qs = 0 

n  Use low mode of quark propagator, treat it exactly  

     ( all-to-all propagator with sparse random source ) 

n  First non-zero signal  Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …
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X
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Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.

(a) (b)

Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.
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For a start, it would be nice to compute at least electro-quenched contribution, namely setting (see ref. [1]):

rf = 1, and (10)

gs = g0s . (11)

In this case, only diagrams in Figure 1 contribute.
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e↵ects to the connected part of the HVP, beyond electro-quenched approximation.
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O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧

The Leading Order Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops (Below focus on light contri-
bution only)

Quark-disconnected piece with ⇡ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054, accepted for
PRL

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above ms suppressed

(sparse) random sources e↵ective for high modes

⇧(q2) � ⇧(0) =
X

t

✓
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q2
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FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o� aHVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of
T with our final result for aHVP (LO) DISC

µ with its statistical
error band.

we report our final result

aHVP (LO) DISC
µ

= �9.6(3.3)(2.3) ⇥ 10�10 , (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest
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LT for 323 x 64 lattice
LT for 483 x 96 lattice

LT for 643 x 128 lattice
LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of aHVP

µ
at percent or sub-percent pre-

cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.

ACKNOWLEDGMENTS

We would like to thank our RBC and UKQCD collabo-
rators for helpful discussions and support. C.L. is in par-
ticular indebted to Norman Christ, Masashi Hayakawa,
and Chulwoo Jung for helpful comments regarding this
manuscript. This calculation was carried out at the
Fermilab cluster pi0 as part of the USQCD Collabora-
tion. The eigenvectors were generated under the ALCC
Program of the US DOE on the IBM Blue Gene/Q
(BG/Q) Mira machine at the Argonne Leadership Class
Facility, a DOE O�ce of Science Facility supported un-
der Contract De-AC02-06CH11357. T.B. is supported
by US DOE grant DE-FG02-92ER40716. P.A.B. and
A.P. are supported in part by UK STFC Grants No.
ST/M006530/1, ST/L000458/1, ST/K005790/1, and
ST/K005804/1 and A.P. additionally by ST/L000296/1.
T.I. and C.L. are supported in part by US DOE Contract
#AC-02-98CH10886(BNL). T.I. is supported in part by
the Japanese Ministry of Education Grant-in-Aid, No.
26400261. L.J. is supported in part by US DOE grant
#de-sc0011941. A.J. is supported by EU FP7/2007-2013
ERC grant 279757. K.M. is supported by the National
Sciences and Engineering Research Council of Canada.
M.S. is supported by EPSRC Doctoral Training Centre
Grant EP/G03690X/1.

� Corresponding author; clehner@quark.phy.bnl.gov

�(9.6 ± 3.3) ⇥ 10�10 or about 1.5% of total at 3 � level
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HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054, accepted by PRL

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result

a
HVP (LO) DISC
µ = �9.6(3.3)stat(2.3)sys ⇥ 10�10 (13)

from 20 configurations at physical pion mass and 45
propagators/configuration.
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13	
36

Sensitive to mπ
crucial to compute at physical mass



HVP QED+ strong IB corrections

[  V. Gulpers’s talk  ] 

n HVP is computed so far at Iso-symmetric quark mass, needs to compute 
isospin breaking corrections : Qu, Qd, mu-md ≠0

n u,d,s quark mass and lattice spacing are re-tuned using
{charge,neutral} x{pion,kaon} and ( Omega baryon masses )

n For now, V, S, F, M  are computed :  assumes EM and IB of sea quark and 
also shift to lattice spacing is small (correction to disconnected diagram)

n Point-source method :  stochastically sample pair of 2 EM vertices a la 
important sampling with exact photon

37

HVP QED contribution
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Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

New method: use importance sampling in position space and local
vector currents

11 / 30

HVP strong IB contribution

x

x

x

(a) M
x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

Calculate strong IB e↵ects via insertions of mass corrections in an
expansion around isospin symmetric point

12 / 30



QED+IB retuning  [2017 C. Lehner]

n Use QEDL for photon propagator, universal finite volume correction, 
=>  - 0.57 MeV shift

n 30 conf, a=0.11 fm, AMA  per conf : 50x50 sloppy measurements  for long 
distance, 25x25 for short distance.

38

HVP QED+strong IB contributions

Result of parameter retuning (bare lattice masses):5.1 Results

If we ignore the lattice-spacing shift for now and only focus on diagrams V , S,
and M , we obtain

�mu = �0.000678(83) , (46)

�md = 0.000519(83) , (47)

�ms = �0.000431(32) , (48)

mres + ml + �mu

mres + ml + �md
= 0.373(59) , (49)

mPDG
u

mPDG
d

= 0.48(11) . (50)
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HVP QED+strong IB contributions
Diagrams S, V for pion mass:
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Diagram F for pion mass is measured and tiny.
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In Fig. 9 we show the quenched QED pion mass shift computed on 8 con-
figurations with and without finite-volume correction. We use the QEDL pre-
scription with universal correction up to O(1/L2) calculated in Ref. [1],

�m
FV = �m⇡↵QED

✓


2m⇡L

✓
1 +

2

m⇡L

◆◆
(27)

with  = 2.837297. For the 483 physical point ensemble this quantity is

�m
FV = �0.565376 MeV . (28)

In Fig. 10 we present an observed cancellation between V and S contractions
for the neutral pion QED correction.

Beyond quenched QED, we need to consider more diagrams in Fig. 9. It is
straightforward to see that contributions from diagrams D1 and D2 to this split-
ting vanish. Diagram T also vanishes due to the charge factors (eu+ed)� (eu+
ed) = 0. Diagram D3 vanishes trivially for m⇡+ and due to u � d cancellation
in the right loop for m⇡0 . Diagram F, however, contributes with coe�cient

(�1)
1

2

�
e
2
u � 2eued + e

2
d

�
= �1

2
, (29)

where the (�1) factor comes from the presence of a second Fermion loop. This
contribution, however, is suppressed significantly as can be seen in Fig. 11.

11



HVP IB+QED corrections

n Strong IB effect (left),  EM effect (right)

n Could also compute the difference 
IB correction of 
aµ(e+e-) – aµ(�) ~ O(10) � 10-10

[  M. Bruno’s talk  ] 
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HVP QED+strong IB contributions
HVP strong IB e↵ect

-40

-30

-20

-10

 0

 10

 20

 0  5  10  15  20  25

w
t C

(t)
 1

010

t / 0.11fm

Diagram M
0

16 / 30

HVP QED+strong IB contributions
HVP QED example: diagram V+S
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Statistics improvements available soon
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EPJ Web of Conferences

Figure 2. The pion form factor |Fπ(s)|2 = 4Rππ/β3π (βπ =√
(1 − 4m2π/s)) dominated by the ρ resonance peak. Data in-
clude measurements from Novosibirsk (NSK) [27–29], Frascati
(KLOE) [30–32], SLAC (BaBar) [33] and Beijing (BESIII) [34].

Table 1. Results for ahad(1)µ (in units ×10−10).

final state range (GeV) ahad(1)µ (stat) (syst) [tot] rel[abs]%
ρ ( 0.28, 1.05) 505.96 ( 0.77) ( 2.47)[ 2.59] 0.5 [37.8]
ω ( 0.42, 0.81) 35.23 ( 0.42) ( 0.95)[ 1.04] 3.0 [ 6.1]
φ ( 1.00, 1.04) 34.31 ( 0.48) ( 0.79)[ 0.92] 2.7 [ 4.8]
J/ψ 8.94 ( 0.42) ( 0.41)[ 0.59] 6.6 [ 1.9]
Υ 0.11 ( 0.00) ( 0.01)[ 0.01] 6.8 [ 0.0]
had ( 1.05, 2.00) 60.45 ( 0.21) ( 2.80)[ 2.80] 4.6 [44.4]
had ( 2.00, 3.10) 21.63 ( 0.12) ( 0.92)[ 0.93] 4.3 [ 4.8]
had ( 3.10, 3.60) 3.77 ( 0.03) ( 0.10)[ 0.10] 2.8 [ 0.1]
had ( 3.60, 5.20) 7.50 ( 0.04) ( 0.01)[ 0.04] 0.3 [ 0.0]
pQCD ( 5.20, 9.46) 6.27 ( 0.00) ( 0.01)[ 0.01] 0.0 [ 0.0]
had ( 9.46,13.00) 1.28 ( 0.01) ( 0.07)[ 0.07] 5.4 [ 0.0]
pQCD (13.0,∞) 1.53 ( 0.00) ( 0.00)[ 0.00] 0.0 [ 0.0]
data ( 0.28,13.00) 679.19 ( 1.12) ( 4.06)[ 4.21] 0.6 [100.]
total 686.99 ( 1.12) ( 4.06)[ 4.21] 0.6 [100.]

The kernel K̂(s) is an analytically known monotonically
increasing function, raising from about 0.64 at the two
pion threshold 4m2π to 1 as s→ ∞. This integral is well de-
fined due to the asymptotic freedom of QCD, which allows
for a perturbative QCD (pQCD) evaluation of the high en-
ergy contributions. Because of the 1/s2 weight, the dom-
inant contribution comes from the lowest lying hadronic
resonance, the ρ meson (see figure 2). As low energy
contributions are enhanced, about ∼ 75% come from the
region 2mπ <

√
s < 1GeV dominated by the π+π− chan-

nel. Experimental errors imply theoretical uncertainties,
the main issue for the muon g−2. Typically, results are col-
lected from different resonances and regions as presented
in table 2. Statistical errors (stat) are summed in quadra-
ture, systematic (syst) ones are taken into account linearly
(100% correlated) within the different contributions of the
list, and summed quadratically from the different regions
and resonances. From 5.2 GeV to 9.46 GeV and above 13
GeV pQCD is used. Relative (rel) and absolute (abs) er-
rors are also shown. The distribution of contributions and
errors are illustrated in the pie chart figure 3. As a result
we find

ahad(1)µ = (686.99 ± 4.21)[687.19± 3.48] × 10−10 (3)

based on e+e−–data [incl. τ-decay spectra [35]]. In the
last 15 years e+e− cross-section measurements have dra-
matically improved, from energy scans [27–29] at Novosi-
birsk (NSK) and later, using the radiative return mecha-
nism, measurements via initial state radiation (ISR) at me-
son factories (see figure 4) [30–34]. A third possibility to
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φ, . . . 2.0 GeV
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ψ 9.5 GeVΥ
0.0 GeV, ∞

ρ,ω

1.0 GeV

φ, . . .
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∆aµ (δ∆aµ)
2

contribution error

Figure 3. Muon g − 2: distribution of contributions and error
squares from different energy ranges.

γ
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s = M2
φ; s′ = s (1 − k), k = Eγ/Ebeam

π+π−, ρ0φ hadrons

b)a)

Figure 4. a) Initial state radiation (ISR), b) Standard energy scan.

γ γ

e− u, d

e+ ū, d̄

π+π−, · · · [I = 1]

⇑

isospin rotation
⇓

W W

ν̄µ d

τ− ū

π0π−, · · ·

Figure 5. τ-decay data may be combined with I=1 part of e+e−
annihilation data after isospin rotation [π−π0] ⇔ [π−π+] and
applying isospin breaking (IB) corrections (e.m. effects, phase
space, isospin breaking in masses, widths, ρ0 − ω mixing etc.).

enhance experimental information useful to improve HVP
estimates are τ –decay spectra τ → ν̄τπ

0π−, · · · , supplied
by isospin breaking effects [5–7, 35–40]. In the conserved
vector current (CVC) limit τ spectra should be identical
to the isovector part I = 1 of the e+e− spectra, as illus-
trated in figure 5. Including the I = 1 τ → ππντ data
available from [41–45] in the range [0.63-0.96] GeV one
obtains [35]:

ahadµ [ee→ ππ] = 353.82(0.88)(2.17)[2.34] × 10−10

ahadµ [τ→ ππν] = 354.25(1.24)(0.61)[1.38] × 10−10

ahadµ [ ee + τ ] = 354.14(0.82)(0.86)[1.19] × 10−10 ,

which improves the LO HVP as given in (3). We briefly
summarize recent progress in data collection as follows.

2.1 Data

As I mentioned the most important data are the ππ produc-
tion data in the range up to 1 GeV. New experimental input
for HVP comes from BESIII [34]. Still the most precise



R-ratio + Lattice 
[ Christoph Lehner Lat17 ]

 670

 675

 680

 685

 690

 695

 700

 705

 710

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
x 

10
-1

0

t1 / fm

Lattice + LD R-ratio + SD R-ratio

Lattice: sQED FV correction

HVP strong IB contribution

x

x

x

(a) M
x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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Calculate strong IB e↵ects via insertions of mass corrections in an
expansion around isospin symmetric point
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HVP QED contribution
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Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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New method: use importance sampling in position space and local
vector currents
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non-diagonal operators.
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New method: use importance sampling in position space and local
vector currents
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New method: use importance sampling in position space and local
vector currents
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t0 = 0.4 fm

t1 dependence is flat =>  a consistency between R-ratio and Lattice
t1 = 1.2 fm,  R-ratio :  Lattice = 50:50
t1=1.2 fm current error (note 100% correlation in R-ratio) is minimum



HVP Preliminary results
[ Christoph Lehner et al.  1801.07224 ]

Combined Rn -ratio +Lattice 
in window [0.4 fm, 1.2 fm ] 
=>error 6.8e-10 [ 1 % ]

central value contributions n

R-ratio:Lattice =  2:1 

Finite Volume correction n

3(3) e-10 

scale error : 0.2% => ~ 3en -10 

valence quark mass, an 4 error
~  negligible
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No new physics
Jegerlehner 2017

DHMZ 2017
DHMZ 2012

HLMNT 2011
RBC/UKQCD 2018
RBC/UKQCD 2018

BMW 2017
Mainz 2017

HPQCD 2016
ETMC 2013
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4

a ud, conn, isospin
µ 202.9(1.4)S(0.2)C(0.1)V(0.2)A(0.2)Z 649.7(14.2)S(2.8)C(3.7)V(1.5)A(0.4)Z(0.1)E48(0.1)E64

a s, conn, isospin
µ 27.0(0.2)S(0.0)C(0.1)A(0.0)Z 53.2(0.4)S(0.0)C(0.3)A(0.0)Z

a c, conn, isospin
µ 3.0(0.0)S(0.1)C(0.0)Z(0.0)M 14.3(0.0)S(0.7)C(0.1)Z(0.0)M

a uds, disc, isospin
µ �1.0(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z �11.2(3.3)S(0.4)V(2.3)L

a QED, conn
µ 0.2(0.2)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E 5.9(5.7)S(0.3)C(1.2)V(0.0)A(0.0)Z(1.1)E

a QED, disc
µ �0.2(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E �6.9(2.1)S(0.4)C(1.4)V(0.0)A(0.0)Z(1.3)E

a SIB
µ 0.1(0.2)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E48 10.6(4.3)S(0.6)C(6.6)V(0.1)A(0.0)Z(1.3)E48

a udsc, isospin
µ 231.9(1.4)S(0.2)C(0.1)V(0.3)A(0.2)Z(0.0)M 705.9(14.6)S(2.9)C(3.7)V(1.8)A(0.4)Z(2.3)L(0.1)E48

(0.1)E64(0.0)M
a QED, SIB
µ 0.1(0.3)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E(0.0)E48 9.5(7.4)S(0.7)C(6.9)V(0.1)A(0.0)Z(1.7)E(1.3)E48

a R�ratio
µ 460.4(0.7)RST(2.1)RSY

aµ 692.5(1.4)S(0.2)C(0.2)V(0.3)A(0.2)Z(0.0)E(0.0)E48 715.4(16.3)S(3.0)C(7.8)V(1.9)A(0.4)Z(1.7)E(2.3)L
(0.0)b(0.1)c(0.0)S(0.0)Q(0.0)M(0.7)RST(2.1)RSY (1.5)E48(0.1)E64(0.3)b(0.2)c(1.1)S(0.3)Q(0.0)M

TABLE I. Individual and summed contributions to aµ multiplied by 1010. The left column lists results for the window method
with t0 = 0.4 fm and t1 = 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective
uncertainties are defined in the main text.

We furthermore propagate uncertainties of the lattice
spacing (A) and the renormalization factors ZV (Z). For
the quark-disconnected contribution we adopt the addi-
tional long-distance error discussed in Ref. [29] (L) and
for the charm contribution we propagate uncertainties
from the global fit procedure [22] (M). Systematic errors
of the R-ratio computation are taken from Ref. [1] and
quoted as (RSY). The neglected bottom quark (b) and
charm sea quark (c) contributions as well as e↵ects of
neglected QED (Q) and SIB (S) diagrams are estimated
as described in the previous section.

For the QED and SIB corrections, we assume domi-

nance of the low-lying ⇡⇡ and ⇡� states and fit C(1)
QED(t)

as well as C(1)
�mf

(t) to (c1 + c0t)e�Et, where we vary c0
and c1 for fixed energy E. The resulting p-values are
larger than 0.2 for all cases and we use this functional
form to compute the respective contribution to aµ. For
the QED correction, we vary the energy E between the
lowest ⇡⇡ and ⇡� energies and quote the di↵erence as ad-
ditional uncertainty (E). For the SIB correction, we take
E to be the ⇡⇡ ground-state energy.

For the light quark contribution of our pure lattice re-
sult we use a bounding method [37] similar to Ref. [38]
and find that upper and lower bounds meet within errors
at t = 3.0 fm. We vary the ground-state energy that en-
ters this method [39] between the free-field and interact-
ing value [40]. For the 48I ensemble we find Efree

0 = 527.3
MeV, E0 = 517.4 MeV + O(1/L6) and for the 64I en-
semble we have Efree

0 = 536.1 MeV, E0 = 525.1 MeV
+ O(1/L6). We quote the respective uncertainties as
(E48) and (E64). The variation of ⇡⇡ ground-state en-
ergy on the 48I ensemble also enters the SIB correction
as described above.

Figure 5 shows our results for the window method with
t0 = 0.4 fm. While the partial lattice and R-ratio contri-
butions change by several 100 ⇥ 10�10, the sum changes
only at the level of quoted uncertainties. This provides
a non-trivial consistency check between the lattice and
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FIG. 5. We show results for the window method with t0 = 0.4
fm as a function of t1. The top panel shows the combined
aµ, the middle panel shows the partial contributions of the
lattice and R-ratio data, and the bottom shows the respective
uncertainties.

the R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the supplementary
material. The uncertainty of the current analysis is min-
imal for t1 = 1 fm, which we take as our main result
for the window method. For t0 = t1 we reproduce the
value of Ref. [1]. In Fig. 6, we show the t1-dependence
of individual lattice contributions and compare our re-
sults with previously published results in Fig. 7. Our
combined lattice and R-ratio result is more precise than
the R-ratio computation by itself and reduces the ten-
sion to the other R-ratio results. Results for di↵erent
window parameters t0 and t1 and a comparison of indi-
vidual components with previously published results are
provided as supplementary material.
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Hadronic Light-by-Light (HLbL) 
contributions

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

45

[ Luchang Jin et al. 
Phys.Rev. D96 (2017) no.3, 034515 
Phys.Rev.Lett. 118 (2017) no.2, 022005  ]

[ Antonie Geradine’s talk ]



HLbL from Models
n Model estimate with non-perturbative constraints at the chiral / 

low energy limits using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F. Jegerlehner ,  x 1011
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n Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 
quark loop and the lepton line connected :  

disconnected problem in Lattice QED+QCD  -> connected problem with analytic 
photon

n QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 
vertex location x,y, z and xop is summed over space-time exactly

n Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 
contribution due to confinement, are summed for all pairs

n longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R, are done stochastically with 
a probability shown above  ( Adaptive Monte Carlo sampling )

Coordinate space Point photon method 
[ Luchang Jin et al. , PRD93, 014503 (2016) ]

QEDA,QEDB
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

xop

z
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HLbL point source method [L. Jin et al. 1510.07100]

• Anomalous magnetic moment, F2(q
2
) at q2 ! 0 limit

F cHLbL

2
(q2 = 0)

m

(�s0,s)i

2
=

P
x,y,z,xop

2V T
✏i,j,k (xop � xref)j · iūs0(~0)F

C
k (x, y, z, xop)us(~0),

• Stochastic sampling of x and y point pairs. Sum over x and z.

FC
⌫ (x, y, z, xop) = (�ie)6G⇢,�,(x, y, z)HC

⇢,�,,⌫(x, y, z, xop),

xsrc xsnk↵, ⇢ ⌘, �,�

xop, ⌫

z,

x, ⇢ y,�

tsrc tsnk↵, ⇢ ⌘, �,�

z

x y



Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method

n [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config.

n [moment method , q2→0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show

to directly get F2(0) without extrapolation.

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
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′
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :
49



Current conservation & subtractions

n conservation =>  transverse tensor

n In infinite volume, q=0, ���(q) = 0
n For finite volume, ���(0)  is exponentially small                                 

(L.Jin,   use also in HLbL)

n e.g.  DWF  L=2, 3, 5 fm ����0) = 8(3)e-4, 2(13)e-5, -1(5)e-8
n Subtract ���(0) alternates FVE, and  reduce stat error  

“-1” subtraction trick [Bernecker & Meyer, Maintz] : 
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Subtraction using current conservation

• From current conservation, @⇢V⇢(x) = 0, and mass gap, hxV⇢(x)O(0)i ⇠
|x|n exp(�m⇡|x|)

X

x

HC
⇢,�,,⌫(x, y, z, xop) =

X

x

hV⇢(x)V�(y)V(z)V⌫(xop)i = 0

X

z

HC
⇢,�,,⌫(x, y, z, xop) = 0

at V ! 1 and a ! 0 limit (we use local currents).

• We could further change QED weight

G(2)

⇢,�,(x, y, z) = G(1)

⇢,�,(x, y, z) � G(1)

⇢,�,(y, y, z) � G(1)

⇢,�,(x, y, y) + G(1)

⇢,�,(y, y, y)

without changing sum
P

x,y,z G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop).

• Subtraction changes discretization error and finite volume error.

• Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.

• Also now G(2)

�,,⇢(z, z, x) = G(2)

�,,⇢(y, z, z) = 0, so short distance O(a2
) is suppressed.

• The 4 dimensional integral is calculated numerically with the CUBA library cubature
rules. (x, y, z) is represented by 5 parameters, compute on N5 grid points and
interpolates. (|x � y| < 11 fm).

cHLbL



Dramatic Improvement !
Luchang JinZero External Momentum Transfer Improvement 29/32
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11 fm, 243x64  (2.7 fm)3, 
mπ = 329 MeV,   mμ =~ 190 MeV, e=1

more than x100  reduced cost !
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Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p
NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.tsep

2.2 fm
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SU(3) hierarchies for d-HLbL

n At ms=mud limit,  following type of disconnected HLbL
diagrams survive Qu + Qd + Qs = 0

n Physical point run using similar techniques to c-HLbL.

n other diagrams  suppressed by
O(ms-mud) /3    and    O( (ms-mud)2 )

Muon g − 2 Light by Light

by Luchang Jin

xsrc xsnkz
′
,κ

′
y
′
,σ

′ x
′
, ρ

′

xop, ν

z,κ
y,σ x, ρ

Figure 1. Disconnected Light by Light diagrams. There are other possible permutations.

1 Method outline

• Use one configuration to compute 32 point source propagators and perform HVP like con-
traction. Store the average of the results, Πρ,σ

avg(r), and later we would subtract it from other
HVP like contraction computed using other configurations.

Πρ,σ
avg(r) =

1
N

∑

k=1

N

{−Tr[γρSq(xk, xk + r)γσSq(xk + r, xk)]} (1)

• Start with point source x, compute point source quark propagators and photon x→ x′.

• Compute the local current for all possible y, Πρ,σ(x, y) (subtract Πρ,σ
avg(x, y) from this value)

Πρ,σ(x, y) = −Tr[γρSq(x, y)γσSq(y, x)]−Πρ,σ
avg(y −x) (2)

• Optional subtraction: Ideally, the sum of the current over space time should be zero. Since
we use local current, this is not strictly true. But we can introduce Πρ,σ

′ (x, y) where

Πρ,σ
′ (x, y) = Πρ,σ(x, y)− δx,y

∑

y ′

Πρ,σ(x, y ′) (3)

Should try to see if this trick work for connected LbL calculation.

• Use the current computed above as a source and construct photon y→ y ′

• Use the two photons constructed above and compute the muon line with sequential source
finally contract at z ′ with local current. Note that this procedure should be performed for all
possible permutations of the three photons. The muon source and sink separation is usually
taken to be half of the lattice time extent, and the source and sink positions are chosen so
that x is in the middle of them xt = ((xsrc)t +(xsnk)t)/2.

• Use the local current at all possible z ′ construct photon z ′→ z

1
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Figure 5.1: Leading order diagram, survives in SU(3) limit.

xsrc xsnkz0,0 y0,�0 x0, ⇢0

xop, ⌫

z, y,� x, ⇢

Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.

xsrc xsnky0,�0 x0, ⇢0 z0,0

xop, ⌫

z,y,� x, ⇢

xsrc xsnky0,�0 z0,0 x0, ⇢0

xop, ⌫

z,y,� x, ⇢

diagrams, the signal has to come from a subtle gluon interactions between the two quark

loops, which can only be discovered by gauge averaging. As a result, although the signal

should be exponentially suppresed when |r| = |x � z| become large just as the connected

diagram, the noise remains constant for arbitrary |r|. Since the formula involve summation

over r, one can expect a lot of noises come from the large |r| region, and will become larger

if we increase the volume. However, the independence of these two loops also provide some

benefit. The contraction at y position will not depend on the position of z, thus the M2 trick

can be applied without recomputing the muon part. So, we obtained order M2 combinations

of samples with no additional cost, where M is the number of point source quark propagators
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Figure 5.3: Even higher order diagrams.

xsrc xsnkz0,0 y0,�0 x0, ⇢0

xop, ⌫

z, y,� x, ⇢

xsrc xsnky0,�0 x0, ⇢0 z0,0

xop, ⌫

z,
y,� x, ⇢

xsrc xsnkz0,0 y0,�0 x0, ⇢0

xop, ⌫

z, y,� x, ⇢

computed for each configuration.

5.2 Infinite volume limit

Normally, the finite volume e↵ects in lattice QCD calculations are exponentially suppressed

by L, the linear size of the lattice volume times m⇡, the energy of lowest energy eigen-state

of QCD. For example, the points x, y, z, which appears in Eq. (3.6), are directly connected

to on the quark loop. The finite volume e↵ects introduced when limiting these points in a

finite size lattice are exponentially suppressed. However, in the light-by-light calculation,

there are also QED finite volume e↵ects. The QED finite volume e↵ects enter only through

Eq. (3.7), which include everything except the quark loop. We repeat the equation below:

G⇢�(x, y, z, xsnk, xsrc) =
X

x0,y0,z0

G⇢⇢0(x, x
0)G��0(y, y0)G0(z, z0)

·

h
Sµ (xsnk, x

0) �⇢0Sµ(x
0, z0)�0Sµ(z

0, y0)��0Sµ (y
0, xsrc)

+Sµ (xsnk, z
0) �0Sµ(z

0, x0)�⇢0Sµ(x
0, y0)��0Sµ (y

0, xsrc)

+four other permutations
i
. (5.1)

The summation variables x0, y0, z0 in above equation can move freely along the muon line,

only connected to the quark loop by massless photons. Thus, Eq. (5.1), when evaluated

(ms-mud)0

(ms-mud)/3 (ms-mud)2
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Disconnected formula 22/40

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

• We can use two point source photons at y and z, which are chosen randomly. The points
xop and x are summed over exactly on lattice.

• Only point source quark propagators are needed. We compute M point source propagators
and all M2 combinations of them are used to perform the stochastic sum over r = z − y.

Fν
D(x, y, z, xop) = (−ie)6 Gρ,σ,κ(x, y, z)Hρ,σ,κ,ν

D (x, y, z, xop) (13)

Hρ,σ,κ,ν
D (x, y, z, xop) =

〈

1
2

Πν ,κ(xop, z) [Πρ,σ(x, y)−Πρ,σ
avg(x− y)]

〉

QCD

(14)

Πρ,σ(x, y) = −
∑

q

(eq/e)2Tr[γρ Sq(x, y) γσ Sq(y, x)]. (15)

54

Disconnected calculation



Disconnected claculation
Disconnected formula 23/40

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

F2
dHLbL(0)

m

(σs′,s)i

2
=

∑

r,x

∑

xop

1
2
ϵi,j ,k(x̃op)j · i ūs′

(

0⃗
)

Fk
D(x, y = r, z = 0, xop)us

(

0⃗
)

(16)

Hρ,σ,κ,ν
D (x, y, z, xop) =

〈

1
2

Πν ,κ(xop, z) [Πρ,σ(x, y)−Πρ,σ
avg(x− y)]

〉

QCD

(17)

∑

xop

1
2
ϵi,j ,k(xop)j ⟨Πρ,σ(xop, 0)⟩QCD =

∑

xop

1
2
ϵi,j,k(−xop)j ⟨Πρ,σ(−xop, 0)⟩QCD =0

• Because of the parity symmetry, the expectation value for the left loop average to zero.

• [Πρ,σ(x, y)−Πρ,σ
avg(x− y)] is only a noise reduction technique. Πρ,σ

avg(x− y) should remain
constant through out the entire calculation.
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M2 trick
M2 trick 29/36

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

• For QEDL, we can compute the QED function for all z given the y location fixed and x
summed over. Allow us to compute all combination of y, z with little efforts.

• For QED∞, although we can compute all the function Gρ,σ,κ(x, y, z) simply by interpo-
late, we cannot easily compute this function (even after fixing y) for all x and z, simply
because of its cost is proportion to Volume2.

• However, we with QED∞ and interpolation, we can freely choose which coordinates we
compute. For example, we may compute all z for |x− y |!5, and sample z for |x− y |>5.
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140 MeV Pion, connected and 
disconnected LbL results

[ Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005 ]
n left: connected,  right : leading disconnected

n Using AMA with 2,000 zMobius low modes, AMA

139MeV Pion 483
× 96 Lattice 21/32
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Figure 15. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. Left: connected
diagrams contribution. Right: leading disconnected diagrams contribution.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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Figure 15. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. Left: connected
diagrams contribution. Right: leading disconnected diagrams contribution.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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∣

∣

cHLbL

= (0.0926± 0.0077)×
(

α

π

)

3
=(11.60± 0.96)× 10−10 (17)
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2

∣

∣

∣

∣

dHLbL

= (−0.0498± 0.0064)×
(

α

π

)

3
=(−6.25± 0.80)× 10−10 (18)

gµ − 2
2

∣

∣

∣

∣

HLbL

= (0.0427± 0.0108)×
(

α

π

)

3
=(5.35± 1.35)× 10−10 (19)

(  statistical error only )
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Updates from PRL (2017) 
[Tom Blum, C. Lehner, TI, Luchang Jin ]

n Discretization error

→ a scaling study for 1/a = 2.7 GeV, 64 cube lattice at physical quark 
mass for both connected and disconnected is proposed to ALCC at Argonne

[Tom Blum Lat17 ]

n Finite volume 
Using Infinite Volume and continuum lepton + photon diagrams
using L~ 5, 6, 10 fm box
[C.Lehner Uconn g-2 Theory Initiative]   [TI Lat17 ] 
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Nf=2+1 DWF QCD ensemble 
at physical quark mass
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cHLbL Different lattice spacings
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cHLbL contribution: lattice spacing e↵ect (preliminary)
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dHLbL contribution: lattice spacing e↵ect (preliminary)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 5 10 15 20

F
2
(0
)/
(α

/π
)3

r (lattice unit for 48I)

48I 65 confs
64I 10 confs

Large negative increase tends to cancel connected one

Collecting more statistics!
22 / 27

dHLbL: lattice spacing e↵ect (preliminary)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  5  10  15  20  25

F
2
(
0
)
/
(

α
/

π
)
3

r (in 48c lattice units)

Add new 243, 1 GeV,
ID ensemble

O(a4) may be significant

c .f . f⇡ = 130.55(11),
fK = 158.15(13)

Similar behavior for HVP

Starting finer ID
ensemble @1.4 GeV

18 / 26

dHLbL Different lattice spacings

1/a = 2.37 GeV, 1.73 GeV, 1.0 GeV



Remaining dHLbL
The remaining disconnected diagrams 30/36

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κy,σ x, ρ

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κy,σ x, ρ

• These are the subleading disconnected diagrams in the SU(3) limit.

• The right diagram has a factor of 1/3 suppression from the multiplicity of the diagram
compare with the left diagram, i.e. the external photon is more likely to be on the loop
with three photons.

• For the left diagram, the moment method works just like the connected case. With both
QEDL or QED∞, we can sample x, y and sum over z. We can use the M2 trick for the
x, y sampling. Low-modes-averaging for the loop with z.

• For the right diagram, The moment method still works, however, we have to use a point
on the other loop as the reference point, which may be more noisy. But as mentioned
above, the right diagram is more suppressed.
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Infinite Volume Photon and Lepton QED1
[Feynman, Schwinger, Tomonaga]

• Instead of, or, in addition to, larger QED box, one could use infinite volume QED to
compute G⇢,�,(x, y, z).

• Hadron part HC
⇢,�,,⌫(x, y, z, xop) has following features due to the mass gap :

. For large distance separation, the 4pt Green function is exponentially
suppressed: HC

⇢,�,,⌫(x, y, z, xop) ⇠ exp[�m⇡ ⇥ dist(x, y, z, xop)]

. For fixed (x, y, z, xop), FV error (wraparound effect etc.) is exponentially
suppressed: HC

⇢,�,,⌫|V � HC
⇢,�,,⌫|1 ⇠ exp[�m⇡ ⇥ L]

• By using QED1 weight function G⇢,�,(x, y, z), which is not exponentially growing,
asymptotic FV correction is exponentially suppressed

�V

2

4
X

x,y,z,xop

G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop)]

3

5 ⇠ exp[�m⇡L]

(xref = (x + y)/2 is at middle of QCD box using transnational invariance)

Taku Izubuchi, Lattice 2017, June 23, 2017 10

QCD box inside a large QED box [L. Jin et al. 1511.05198]

• One could use a larger 4D QED box to compute photon+lepton part of the diagram
G⇢,�,(x, y, z), and compute the hadron part HC

⇢,�,,⌫(x, y, z, xop) in a smaller QCD
box.

• Hadron part could be recycled for different size of QED box, which introduces a
beneficial correlation in taking V ! 1 limit.

• As far as the integral outside of QCD box is small (from exp(�m⇡r) suppression of
hadron 4pt of size r), O(1/L2

) error would be largely suppressed.
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[ Mainz ]
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Preliminary results, QCD case

• QCD case with physical point quark mass,

• 48
3 ⇥ 96 lattice, with a�1

= 1.73GeV, m⇡ = 139MeV, mµ = 106MeV.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

F
2
/(
α
/π

)3

Rmin (short limit)

|x− y| < Rmin with max(|x− z|, |y − z|) < inf

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

F
2
/(
α
/π

)3

Rmin (short limit)

|x− y| < Rmin with max(|x− z|, |y − z|) < 24

• c.f. QEDL case, gµ�2

2

���
cHLbL

= (0.0926 ± 0.0077)
�
↵
⇡

�3

Taku Izubuchi, Lattice 2017, June 23, 2017 18



Discretization error & QED_L FV error 
summary (preliminary)
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HLbL (near) future plans

n c-HLbL, Leading  d-HLbL : 
• Finalize 

QED_L  Statistical, FV, discretization analysis
• Same for QED_Inf (Noisier)

n Higher order d-HLbL

n Comparing with Long distance LQCD calculation with Model/dispersive 
Hadron contributions ( pi0 exchange, … ), and perhaps combine 
LQCD+Model/dispersive

67

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

139MeV Pion 483
× 96 Lattice 21/32
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Figure 15. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. Left: connected
diagrams contribution. Right: leading disconnected diagrams contribution.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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Summary 
n Lattice calculation for g-2 calculation is improved very rapidly

n HVP [ Christoph Lehner et al. ]
• New methods using low mode for connected at physical quark mass, 
• disconnected quark loop at physical quark mass,
• Combining with R-ratio experiment data for cross-check and improvement   =>  1% error 
• Eventually the window will be enlarged for a pure LQCD prediction

• QED and IB  studies are  included. [ V. Gulper’s talk]
• Long distance 2 pi contribution from a separate analysis 

(distillation, GEVP)  [ A. Meyer et al]
• Tau input for g-2  and Lattice interplay [ M. Bruno’s talk]

n HLbL [ Luchang Jin et al ]
• computing leading disconnected diagrams : 

->  8 % stat error in connected,  13 % stat error in leading disconnected
• coordinate-space integral using analytic photon propagator with adaptive probability (point photon method), 

config-by-config conserved external current 
• take moment of relative coordinate to directly take q→0
• AMA, zMobius, 2000 low modes
• Infinite volume / continuum QED weight function to avoid power-like FV

n Goal : HVP sub 1% (then 0.25%) , 
HLbL 10% error 

Can we see the next physics Revolution
(c.f GW ) ?
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[Eigo Shintani Lat17]

69

` ChPT

` Gounaris-Sakurai model

` Anisotropic study

` Direct lattice study (PACS)

2. HVP on the lattice
Studies of finite volume

¾ Lowest-order SChPT gives VPF tensor: Pmn(q)
¾ 10% -- 15% discrepancy between  amHLO[A1] and amHLO[A1

44] 

¾ Coordinate space integral along temporal or spatial direction.
¾ Discrepancy is amHLO [spatial] – amHLO [temporal] ~ 3%. 

Aubin et al., PRD93(2016)

Lehner (2016)

5

consistent with lattice calculation (L=3.8 fm, 0.22 GeV pion, mpL=4.2)

¾ By using time-like pion form factor, g-2 can be described in infinite volume.
¾ 3% FV effect in L=4 fm, 0.19 GeV pion, mpL=4

Wittig (2016,2017), Mainz 1705.01775

¾ Comparison between two volumes in physical pion at fixed a
¾ L > 5 fm, mpL ≳ 3.8
¾ Compare the different boundary
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PACS group recently generates two gauge ensembles:

3. Strategy
PACS 964 and 644 at a=0.08 fm

¾ Nf=2+1 O(a) improved clover fermion + Stout smearing

¾ a=0.083 fm, and two lattice sizes 644 and 964 

¾ (almost) physical pion, 

L=5.4 fm, 0.140 GeV (mpL=3.8),  

with Kud=0.126117, Ks=0.124790
L=8.1 fm, 0.145 GeV (mpL=6.0)

with Kud=0.126117, Ks=0.124902

PACS, 1511.09222

6

~5 MeV difference in pion mass 

14

4. Preliminary result
Finite volume effect

• Slightly negative for tmax > 1.3 fm→ DFV[(L/a=96)-(L/a=64)]~-10, opposite sign from 
expectation (ChPT etc)

However pion mass difference, mp[(L/a=96)–(L/a=64)] = +5 MeV, due to slightly 
different Ks in two ensembles. For same mp such a difference would have been 
reduced by Dam = +3 under assumption from ansatz in  
⇒ conservatively ~±2(2)% FV correction in L/a=64 lattice at finite tmax ~ 2.5 fm
including mass correction.  

• Discrepancy between 644 and 964 (tmax > 2.2 fm) → significant backward state effect. 

Integrand t-integral up to tmax

Aubin et al., PRD93(2016)

HPQCD(2016), Mainz (2017)
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[ Eigo Shintani Lat17 ]



CKM Vus from 
Inclusive tau decay

71

Yet another by-product of muon g-2  HVP

[ Hiroshi Ohki et al.  arXiv:1803.07228 ]
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Tau decay

R	ratio(hadron/lepton)	for	the	final	states	with	strangeness	-1

τ	→	ν	+	hadrons	decay	through	V-A	current	(weak	decay)

Tau	decay	experiment

Rij;V/A ⌘
�[�� � �⌧Hij;V/A(�)]

�[�� � �⌧e��̄e(�)]

��
�⌧

ū

s
W�

hadrons

ū

s��
�⌧

W� •{ }Im

From	unitarity	of	S	matrix,	invariant	matrix	elements	are	related	to	the	total	
scattering	cross	section	σ		[Optical	theorem]

V-A	current

The	spin	0,	and	1,	hadronic	vacuum	polarization	function	for	V/A	current-current	

Determination of |Vus| from lattice HVP and
experimental hadronic � decay

1 Preliminary

For SM hadronic � decays, a derivative of the ratio Rij;V/A of the decay width into states
produced hadronic V and A currents with i, j flavors to the electron decay width,

Rij;V/A ⌘ �[�� � ��Hij;V/A(�)]/�[�� � ��e
��̄e(�)] (1)

is related to the spectral functions �(J)
ij;V/A with the spin J = 0, 1 by

dRij;V/A

ds
=

12�2|Vij|2SEW

m2
�

(1 � y�)
2
�
(1 + 2y� )�

0+1
ij;V/A(s) � 2y��

0
ij;V/A(s)

�
, (2)

where y� = s/m2
� , SEW is a known short-distance electroweak conrrection. Fig. 1 repre-

sents hadronic � decays. The spectal function is defined as �(J)
ij;V/A(s) = 1

� Im�(J)
ij;V/A(�s),

where �(J)
ij;V/A(�s) is computed from the usual flavor ij vector (V) or axial vector (A)

current-current two-point functions;

�(µ�)
ij;V/A(q2) ⌘i

�
d4xeiqx�0|T

�
Jµ

ij;V/A(x)J†�
ij;V/A(0)

�
|0�

=(qµq� � q2gµ�)�(1)
ij;V/A(Q2) + qµq��

(0)
ij;V/A(Q2), (3)

where Jµ
ij;V/A are the V/A currents with flavor ij.

The |Vus| extraction uses an analysis of the us two-point function. From Eq. (2), it
shows that the experimental data of dRus;V/A/ds fixes the |Vus|2 and the spectral function
combination

�
1 + 2

s

m2
�

�
Im�(1)(s) + Im�(0)(s). (4)

The experimental situation for the inclusive � decays is shown in 1. The current status
of |Vus| determination can be found in HFAG-tau summary (See Fig. 2). For the Kaon
pole contribution, we assume a simple delta function form as

|Vus|2
��

1 + 2
s

m2
�

�
Im�(1)(s) + Im�(0)(s)

�
= �(s � m2

k)0.0012299(46). (5)

1

(Hadronic)	vacuum	polarization	function	

�

⇧(Q2)• Experiment side :⌧ ! ⌫ + had through V-A vertex. EW correction SEW

Rij =
�(⌧� ! hadronsij ⌫⌧)

�(⌧� ! e�⌫̄e⌫⌧)

=
12⇡|Vij|2SEW

m2
⌧

Z m2
⌧

0

✓
1 �

s

m2
⌧

◆✓
1 + 2

s

m2
⌧

◆
Im⇧(1)(s) + Im⇧(0)(s)

�

| {z }
⌘ Im⇧(s)

• Lattice side : The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current-
current two point

⇧µ⌫
ij;V/A(q2) = i

Z
d4xeiqx

D
0|TJµ

ij;V/A(x)J†µ
ij;V/A(0)|0

E

= (qµq⌫ � q2gµ⌫)⇧(1)
ij;V/A

(q2) + qµq⌫⇧(0)
ij;V/A
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The finite energy sum rule (FESR) 

w(s) is an arbitrary regular function such as polynomial in s. 

   

• LHS : spectral function ρ(s) is related to the experimental τ inclusive decays  

• RHS … Analytic calculation ����������������������������������������������������������������������������������
with perturbative QCD (pQCD) and OPE

Finite Energy Sum Rule (FESR)

Lattice determination of |Vus| with inclusive hadronic τ decay experiment†

T. Izubuchi,∗1 ∗2 H. Ohki,∗2

The Kobayashi-Maskawa matrix element |Vus| is an
important parameter for flavor physics, which is rele-
vant to the search for new physics beyond the standard
model in particle physics. So far |Vus| has been most
precisely determined by kaon decay experiments. As
an alternative way, from the τ decay, one can also de-
termine |Vus| independently. A conventional method
is to use the so-called finite energy sum rule with poly-
nomial weight function ω(s) and the spectral function

ρ(J)V/A with the spin J = 0, 1 as

∫ s0

0
ω(s)ρ(s)ds = − 1

2πi

∮

|s|=s0

ω(s)Π(s)ds, (1)

where Π(s) is a hadronic vacuum polarization(HVP)
function. Here, ρ(s) on the left hand side is related
to the differential decay of the τ decay by hadronic V
and A currents with u, s flavors as

dRus;V/A

ds
=

12π2|Vus|2SEW

m2
τ

(1− yτ )
2 (2)

×
[
(1 + 2yτρ

(0+1)
us;V/A − 2yτρ

0
us;V/A)

]
,

where yτ = s/m2
τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
the momentum s0 should be taken large enough to use
a perturbative OPE result. By combining both the
inclusive τ decay experiments and pQCD, one can ob-
tain |Vus|. Recent analyses suggest that there is 3 σ
discrepancy between two results from the method that
uses the inclusive τ decay and the CKM unitarity con-
straint. While there might be a possibility that such a
discrepancy could be explained by new physics effect,
we should note that the OPE yields a potential prob-
lematic uncertainty in the |Vus| determination from the
inclusive hadronic τ decay using the finite energy sum
rule a). Thus it is important to reduce the uncertainty
of the QCD part, so that we aim to resolve the so-called
|Vus| puzzule.
In this report, in order for that purpose, we would

like to propose an alternative method to determine
|Vus|, in which we use non-perturbative lattice QCD
results for Π(s) in addition to pQCD. Combing two in-
puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
∗1 Physics Department, Brookhaven National Laboratory, Up-

ton, NY 11973, USA
∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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Fig. 1. Q2
1 dependence of the ratio of the pQCD to the kaon

pole contribution. For pQCD result, the D = 0 OPE

(Nf = 3) and a conventional value of |Vus| are used.

adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.

References
1) P. A. Boyle et al. Int. J. Mod. Phys. Conf. Ser.

35, 1460441 (2014) doi:10.1142/S2010194514604414
[arXiv:1312.1716 [hep-ph]].

b) We thank RBC-UKQCD collaboration and Kim Maltman
for providing lattice HVP and experimental data.
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• τ result v.s. non-τ result :  more than 3 σ deviation : |Vus| puzzle 

• new physics effect? 

• incl. analysis uses Finite energy sum rule (FESR)  

• pQCD and higher order OPE for FESR:  

underestimation of truncation error and/or non-perturbative effects ? 

(c.f. alternative FESR approach, R. Hudspith et. al arXiv:1702.01767 )            

|us|V
0.22 0.225

, PDG 2016l3K
 0.0010±0.2237 

, PDG 2016l2K
 0.0007±0.2254 

CKM unitarity, PDG 2016
 0.0009±0.2258 

 s incl., HFLAV Spring 2017→ τ
 0.0021±0.2186 

, HFLAV Spring 2017νπ → τ / ν K→ τ
 0.0018±0.2236 

 average, HFLAV Spring 2017τ
 0.0015±0.2216 

HFLAV
Spring 2017

3.1�

2



75

Our new method : Combining FESR and Lattice

• If we have a reliable estimate for ⇧(s) in Euclidean (space-like) points, s = �Q2
k < 0,

we could extend the FESR with weight function w(s) to have poles there,

Z 1

sth

w(s)Im⇧(s) = ⇡

NpX

k

Resk[w(s)⇧(s)]s=�Q2
k

⇧(s) =

✓
1 + 2

s

m2
⌧

◆
Im⇧(1)(s) + Im⇧(0)(s) / s (|s| ! 1)

• For Np � 3, the |s| ! 1 circle integral vanishes.

Re(s)

Im(s)
pQCD OPE spectral data

1

XXX

Lattice HVPs
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(generalized dispersion relation )

If we have a reliable estimate for Π(s) in Euclidean (space-like) points, 

we could extend the FESR with weight function w(s) to have N poles there,

Our strategy

Lattice determination of |Vus| with inclusive hadronic τ decay experiment†

T. Izubuchi,∗1 ∗2 H. Ohki,∗2

The Kobayashi-Maskawa matrix element |Vus| is an
important parameter for flavor physics, which is rele-
vant to the search for new physics beyond the standard
model in particle physics. So far |Vus| has been most
precisely determined by kaon decay experiments. As
an alternative way, from the τ decay, one can also de-
termine |Vus| independently. A conventional method
is to use the so-called finite energy sum rule with poly-
nomial weight function ω(s) and the spectral function

ρ(J)V/A with the spin J = 0, 1 as

∫ s0

0
ω(s)ρ(s)ds = − 1

2πi

∮

|s|=s0

ω(s)Π(s)ds, (1)

where Π(s) is a hadronic vacuum polarization(HVP)
function. Here, ρ(s) on the left hand side is related
to the differential decay of the τ decay by hadronic V
and A currents with u, s flavors as

dRus;V/A

ds
=

12π2|Vus|2SEW

m2
τ

(1− yτ )
2 (2)

×
[
(1 + 2yτρ

(0+1)
us;V/A − 2yτρ

0
us;V/A)

]
,

where yτ = s/m2
τ , SEW is a known short-distance elec-

troweak correction. The HVP function Π(s) on the
right hand side in Eq.(1) is analytically calculated by
using OPE based on perturbative QCD (pQCD). Thus,
the momentum s0 should be taken large enough to use
a perturbative OPE result. By combining both the
inclusive τ decay experiments and pQCD, one can ob-
tain |Vus|. Recent analyses suggest that there is 3 σ
discrepancy between two results from the method that
uses the inclusive τ decay and the CKM unitarity con-
straint. While there might be a possibility that such a
discrepancy could be explained by new physics effect,
we should note that the OPE yields a potential prob-
lematic uncertainty in the |Vus| determination from the
inclusive hadronic τ decay using the finite energy sum
rule a). Thus it is important to reduce the uncertainty
of the QCD part, so that we aim to resolve the so-called
|Vus| puzzule.
In this report, in order for that purpose, we would

like to propose an alternative method to determine
|Vus|, in which we use non-perturbative lattice QCD
results for Π(s) in addition to pQCD. Combing two in-
puts, we would expect that more reliable result could
be obtained. In order to use lattice QCD inputs, we

† All the results shown here are preliminary.
∗1 Physics Department, Brookhaven National Laboratory, Up-

ton, NY 11973, USA
∗2 RIKEN Nishina Center
a) For a recent study of the inclusive τ decay using the finite

energy sum rule, see1).
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Fig. 1. Q2
1 dependence of the ratio of the pQCD to the kaon

pole contribution. For pQCD result, the D = 0 OPE

(Nf = 3) and a conventional value of |Vus| are used.

adopt a different weight function ω(s) which has poles
in the Euclidean momentum region. As an illustra-
tive example, we take a following weight function as
ω(s) = 1

(s+Q2
1)(s+Q2

2)···(s+Q2
N )

, where −Q2
k < 0 (for

k = 1, ..., N), and N ≥ 3. Taking s0 → ∞ in Eq.(1),
we obtain

∫ ∞

0
ρ(s)ω(s)ds =

N∑

k

Res
(
Π(−Q2

k)ω(−Q2
k)
)
. (3)

The lattice result is used for residues on the right hand
side. The left hand side can be evaluated up to s = m2

τ

from the experimental data, and we use a pQCD re-
sult for s > m2

τ . There is an advantage in this method.
Since above weight function ω(s) is highly suppressed
in high momentum region, so the uncertainty coming
from pQCD can be reduced. In fact, Fig. 1 shows the
weight function dependence of the ratio of the OPE
contribution of the spectrum integral in Eq.(3) to the
one from the dominant kaon pole contribution. As
shown in Fig. 1, the OPE contribution can be sup-
pressed by adding poles in the weight function.

As a preliminary study, we calculate |Vus| deter-

mined from ρ(0)A . As for the lattice calculation of ρ(0)A ,
we use L = 48 lattice result near the physical quark
massb). Using a weight function with three poles of
(Q2

1, Q
2
2, Q

2
3) = (0.1, 0.2, 0.3), we obtain 0.3% statisti-

cal relative error, which is competitive with previous
results. As a future work, we need to estimate sys-
tematic uncertainties such as lattice discretization, un-
physical mass, and contributions from other channels,
in particular pQCD effects.

References
1) P. A. Boyle et al. Int. J. Mod. Phys. Conf. Ser.

35, 1460441 (2014) doi:10.1142/S2010194514604414
[arXiv:1312.1716 [hep-ph]].

b) We thank RBC-UKQCD collaboration and Kim Maltman
for providing lattice HVP and experimental data.
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weight function w(s)

• Choice of weight function

w(s) =

NpY

k

1

(s + Q2
k)

=
X

k

ak
1

s + Q2
k

, ak =
X

j 6=k

1

Q2
k � Q2

j

=)
X

k

(Qk)
Mak = 0 (M = 0, 1, · · · , Np � 2)

• The residue constraints automatically subtracts ⇧(0,1)(0) and s⇧(1)(0) terms.

• For experimental data, w(s) ⇠ 1/sn, n � 3 suppresses

. larger error from higher multiplicity final states at larger s < m2
⌧

. uncertanties due to pQCD+OPE at m2
⌧ < s

• For lattice, Q2
k should be not too small to avoid large stat. error, Q2 ! 0 extrapo-

lation, Finite Volume error. Also not too larger than m2
⌧ to make the suppression in

time-like, higher energy, higher multiplicity, region enhanced.

• Comparison of different C, N values provides a self-consistency check for reliable
error.
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K
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QCD ensemble and statistics

• Main analysis is on two ensemble, at almost physical quark masses (M⇡ ⇡ 140 MeV,
MK ⇡ 499 MeV), V=(5 fm)3.

• Correct the residual up and strange quark mass error by partially quenched calculation.

• Consistent with other heavier / smaller ensemble are used to estimate size and
direction of discretization errors.

Vol a
�1 [GeV] M⇡ [MeV] MK [MeV] conf

483 ⇥ 96 1.7295(38) 139 499 88
135 496 5 (PQ-correction)

643 ⇥ 128 2.359(7) 139 508 80
135 496 5 (PQ-correction)

Taku Izubuchi, First Workshop of the Muon g-2 Theory Initiative, June 4, 2017 35
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Tuning of the “inclusiveness” of experimental spectral integral

K, Kπ dominates spectral integrals, 

high multiplicity modes and pQCD                  strongly suppressed 
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relative spectral contributions (N=4)

(N = 4, � = 0.067 GeV2)

(s > m2
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Lattice residue contributions

Ratios of each contribution of V/A with spin=0, 1 to the total residue (Lattice) 

         dominance (K-pole)

(N = 4, � = 0.067 GeV2)
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|Vus| from inclusive decays

• 4 channels: Vector or Axial (V or A), spin 0 and 1 

• A0 channel is dominated by K pole. 

    →  For the K pole contribution we use    

                                                                      [RBC/UKQCD, 2014] instead of         

• Other channels :  

A1, V1, V0 (& residual A0) → multi hadron states & pQCD (“other”) 

• We take the continuum limit using the data L=48 and 64   

Here I show several definitions for the |Vus| determination.

K pole : |V K�pole

us | =

s
0.0012299(46)

f
phys
K

(24)

A0 : |V A0
us | =

s
⇢
K�pole
exp

Flat(⇧(0):A)

 
f
lat
K

f
phys
K

!
(25)

V1 + V0 + A1 : |V V1+V0+A1
us | =

s
⇢othersexp

Flat(⇧others)� ⇢pQCD

(26)

V1 + V0 + A1 + A0 : |V V1+V0+A1+A0
us | =

s
⇢
K�pole
exp + ⇢othersexp

(f phys
K )2!(m2

K) + Flat(⇧others)� ⇢pQCD

, (27)

where

⇢
K�pole
exp = 0.0012299

Z 1

0

ds!(s)�(s�m
2

K) = 0.0012299!(m2

K), (28)

⇢
others
exp = |Vus|

2

Z m2
⌧

sth

ds!(s)Im⇧(s), (29)

⇢pQCD =

Z 1

m2
⌧

ds!(s)Im⇧OPE(s), (30)

Flat =
NX

k=1

Res(!(�Q2

k
))⇧lat(�Q2

k
), (31)

and we use f
phys
K = 0.15551(83) [GeV] given in Ref. [2] 3.

I have shown the results for some values of C at N = 3, 4, 5 in comparison with
previous studies in Fig. , where the full results (|V V1+V0+A1+A0

us |) and the one without A0,
(|V V1+V0+A1

us |) are shown on the up and down panels, respectively.

3
There is no (f lat

K /fphys
K ) correction for PQ-data in Eq.25.
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19

Here I show several definitions for the |Vus| determination.

K pole : |V K�pole

us | =

s
0.0012299(46)

f
phys
K

(24)

A0 : |V A0
us | =

s
⇢
K�pole
exp

Flat(⇧(0):A)

 
f
lat
K

f
phys
K

!
(25)

V1 + V0 + A1 : |V V1+V0+A1
us | =

s
⇢othersexp

Flat(⇧others)� ⇢pQCD

(26)

V1 + V0 + A1 + A0 : |V V1+V0+A1+A0
us | =

s
⇢
K�pole
exp + ⇢othersexp

(f phys
K )2!(m2

K) + Flat(⇧others)� ⇢pQCD

, (27)

where

⇢
K�pole
exp = 0.0012299

Z 1

0

ds!(s)�(s�m
2

K) = 0.0012299!(m2

K), (28)

⇢
others
exp = |Vus|

2

Z m2
⌧

sth

ds!(s)Im⇧(s), (29)

⇢pQCD =

Z 1

m2
⌧

ds!(s)Im⇧OPE(s), (30)

Flat =
NX

k=1

Res(!(�Q2

k
))⇧lat(�Q2

k
), (31)

and we use f
phys
K = 0.15551(83) [GeV] given in Ref. [2] 3.

I have shown the results for some values of C at N = 3, 4, 5 in comparison with
previous studies in Fig. , where the full results (|V V1+V0+A1+A0

us |) and the one without A0,
(|V V1+V0+A1

us |) are shown on the up and down panels, respectively.

3
There is no (f lat

K /fphys
K ) correction for PQ-data in Eq.25.

19

fphys
K = 0.15551(83)[GeV]

⇢pQCD =

Z 1

m2
⌧

ds!(s)⇧OPE(s)

A(0)

17



85

• Higher order (      ) discretization error for V1+V0+A1+(residual A0) 

          Two lattice ensembles yield (less than)10% difference  

      → We estimate 10% reduction of O(     ) relative to O(      )  

• Finite volume correction   

   1 loop ChPT analysis of current-current correlation function on finite volume 
for Kπ channel (V1). 

• Isospin breaking effects  

   s-dependent strong isospin breaking corrected Kπ experimental data used. 

   Theory error for dominant Kπ channels: 0.2 % for electromagnetic effects 
and ~ 1% strong isospin breaking effect on V1. [Ref: Antonelli, et al., 
JHEP10(2013)070] 

• pQCD (OPE) uncertainty 

   2% for possible quark hadron duality-violation effect 

Systematic error estimate

O(C2a4) ⇠ 0.1Ca2, (a�1 = 2.37[GeV])

a4

a4 a2

18
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For small C, statistical error dominates.   

For large C, discretization error becomes large.  

We obtain optimal inclusive determinations around C=0.7. 

     systematic error of lattice residue contributions

0.2 0.4 0.6 0.8 1

C [GeV
2
]
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|Vus|
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0 0.2 0.4 0.6 0.8 1

C [GeV
2
]

0.215

0.22

0.225

0.23

0.235

|V
u
s|

Γ
K

[τ
K

], lattice f
K

τ us V+A, N=3
τ us V+A, N=4
τ us V+A, N=5

 Lattice Inclusive        determinations

Theory and experimental errors are included. 

The result is stable against changes of C and N.

(0.87% total error)N = 4, C = 0.7[GeV2] : |Vus| = 0.2228(15)exp(13)th

(N = 4, � = 0.067 GeV2)

|Vus|

20
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0.215 0.22 0.225 0.23 0.235 0.24
|Vus|

Kl3, PDG 2016 

Γ[K
µ2]

3-family unitarity, HT14 |Vud|

τ FB FESR, HFAG17

τ FB FESR, HLMZ17

τ, lattice [N=3, C=0.3 GeV2]

τ, lattice [N=4, C=0.7 GeV2]

τ, lattice [N=5, C=0.9 GeV2]

(conventional implementation)

(new implementation, lower : HFAG16 input)

this work
(preliminary)

Comparison to        from others

All our results (C<1, N=3, 4, 5) are consistent with each other within 1 σ error,  

as well as to CKM unitarity.

�K [⌧ ! K⌫⌧ ] : (filled square)

�K [Kµ2] : (empty square)

|Vus|

21
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Infinite Volume Photon and Lepton QED1
[Feynman, Schwinger, Tomonaga]

• Instead of, or, in addition to, larger QED box, one could use infinite volume QED to
compute G⇢,�,(x, y, z).

• Hadron part HC
⇢,�,,⌫(x, y, z, xop) has following features due to the mass gap :

. For large distance separation, the 4pt Green function is exponentially
suppressed: HC

⇢,�,,⌫(x, y, z, xop) ⇠ exp[�m⇡ ⇥ dist(x, y, z, xop)]

. For fixed (x, y, z, xop), FV error (wraparound effect etc.) is exponentially
suppressed: HC

⇢,�,,⌫|V � HC
⇢,�,,⌫|1 ⇠ exp[�m⇡ ⇥ L]

• By using QED1 weight function G⇢,�,(x, y, z), which is not exponentially growing,
asymptotic FV correction is exponentially suppressed

�V

2

4
X

x,y,z,xop

G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop)]

3

5 ⇠ exp[�m⇡L]

(xref = (x + y)/2 is at middle of QCD box using transnational invariance)

Taku Izubuchi, Lattice 2017, June 23, 2017 10

QCD box inside a large QED box [L. Jin et al. 1511.05198]

• One could use a larger 4D QED box to compute photon+lepton part of the diagram
G⇢,�,(x, y, z), and compute the hadron part HC

⇢,�,,⌫(x, y, z, xop) in a smaller QCD
box.

• Hadron part could be recycled for different size of QED box, which introduces a
beneficial correlation in taking V ! 1 limit.

• As far as the integral outside of QCD box is small (from exp(�m⇡r) suppression of
hadron 4pt of size r), O(1/L2

) error would be largely suppressed.

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop
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Preliminary results, QCD case

• QCD case with physical point quark mass,

• 48
3 ⇥ 96 lattice, with a�1

= 1.73GeV, m⇡ = 139MeV, mµ = 106MeV.
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0.3
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/(
α
/π
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Rmin (short limit)

|x− y| < Rmin with max(|x− z|, |y − z|) < inf

0
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0.15

0.2

0.25
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F
2
/(
α
/π

)3

Rmin (short limit)

|x− y| < Rmin with max(|x− z|, |y − z|) < 24

• c.f. QEDL case, gµ�2

2

���
cHLbL

= (0.0926 ± 0.0077)
�
↵
⇡

�3

Taku Izubuchi, Lattice 2017, June 23, 2017 18



Dispersive + Lattice 

n There are wide variety of application for dispersive analysis using both
inclusive decay data (real world!)  + non-perturbative Lattice QCD

n Quark hadron duality-violation is suppressed by non-perturbative LQCD 

n Lattice point of view : good use of non-plateau region data, which otherwise is wasted !

n Other interesting applications :
• Total decay and transition rate

[ Daniel Robaina Lat17 ] [ Max Hansen Lat17]
• B meson inclusive semileptonic decay 

[JLQCD, Shoji Hashimoto Lat17]
• Nucleon deep in elastic scattering and Parton Distribution  

[ QCDSF, Ross Young Lat17 ]

Must be many more interesting applications
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Our new method : Combining FESR and Lattice

• If we have a reliable estimate for ⇧(s) in Euclidean (space-like) points, s = �Q2
k < 0,

we could extend the FESR with weight function w(s) to have poles there,

Z 1

sth

w(s)Im⇧(s) = ⇡

NpX

k

Resk[w(s)⇧(s)]s=�Q2
k

⇧(s) =

✓
1 + 2

s

m2
⌧

◆
Im⇧(1)(s) + Im⇧(0)(s) / s (|s| ! 1)

• For Np � 3, the |s| ! 1 circle integral vanishes.

Re(s)

Im(s)
pQCD OPE spectral data

1

XXX

Lattice HVPs

Hiroshi Ohki, Friday, June 23 17:50, Seminarios 6+7 [Weak Decays and Matrix Elements] 7

One way street 
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source operator independence

wall

smear

smear

wall

NN(1S0) NN(3S1)

Data Operator Sanity check Operator Sanity check

independence (i) (ii) (iii) independence (i) (ii) (iii)

YIKU2012 No † No No † No

1

[ Sinya Aoki Lat17 ]



[ Max Hansen Lat17 ]
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�1 1

!Im!

Re!!0

Analytic structure of Compton amplitude

Ti(!0, Q
2) =

1

2⇡i

I

C
d!0Ti(!0, Q2)

!0 � !0

Rescale

! =
2P.q

Q2

⇠ 1

2⇡

Z 1

1
d!0 ImTi(!0, Q2)

!0 � !0

[ Ross Young Lat17 ]
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June 21, 2017 S. Hashimoto (KEK/SOKENDAI) Page 7 

Decay amplitude: 
 
Structure function:�

Matrix element:�

calculable on the lattice 
in the unphysical kinematical regime�

(function of v�q and q2)�

(unphysical cut)�

v�q�

[ Shoji Hashimoto Lat17 ]



Future plans

HVPn :  complete QED and Isospin study, improve,  tau  
HVPn : FV error study on ~ (10 fm)3 box  
HLbLn : (discretization error) Nf=2+1 DWF/ Mobius 
ensemble at physical point, L=5.5 fm, a=0.083 fm, (64)3

at Mira, ALCC @Argonne  started to run
HLbLn : FV error study on ~ (10 fm)3 box 
HLbLn : Subleading Disconnected diagrams

96



Backup slides
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RBC (HLO,HNLO)
UKQCD (HLO,HNLO) Mainz/CLS (HLO,HNLO)

RQCD (HLO)
ETMC (HLO)

HPQCD (HLO)

BMW (HLO)

1. Introduction
Lattice works

HLO precision: < 5 % (maybe updated)
HNLO: ~ 10 % statistical accuracy

3

[ Slide from Eigo Shintani ] 
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Method pQCD (OPE) issues Precision limit for |Vus|

Conventional  

FESR 

higher order OPE:  

vacuum saturation 
approximation 

inconsistent OPE 
treatment ([Ref:HLMZ 17]) 

large contributions  
from high-s region 

contribution

3+σ discrepancy from CKM unitarity 

(uncontrolled QCD systematic 
errors?)

Alternative FESR 

[HLMZ 17]

higher order OPE:  

fit by experimental data, 
checked with lattice QCD 

data

large contributions  
from high-s region 

dominant high multiplicity 
experimental data  

(residual modes : 25% error to the 
total contribution) 

[1.1% total error]

Our method 

(lattice-based 
inclusive analysis)

systematically suppressed uncertainties   

via first principle lattice QCD data

currently lattice and experimental 
errors are comparable (<1%) 

pQCD error is negligible. 

[0.87 % total error]

Approaches to determination of |Vus| from inclusive τ decays

22



QCD box in QED box

FV from quark is exponentially suppressed  ~ n exp( - Mπ LQCD)   
Dominant FV effects would be from  photonn

Let photon and n muon propagate in larger (or infinite) box than that 
of quark

n We could examine different lepton/photon in the off-line manner 
e.g.  QED_L (Hayakwa-Uno 2008) with larger box, 
Twisting Averaging [Lehner TI LATTICE14] or 
Infinite Vol. Photon propagators    [C. Lehner, L.Jin, TI LATTICE15]

[Maintz group,  LATTICE16]

Finite Volume Effects - QCD box inside QED box 29/36

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 19. QCD box inside QED box illustration.

∑

r

[

∑

z,xop

1
2

x⃗op× ūs′(0) iF⃗
(

0; x=−
r

2
, y = +

r

2
; z, xop

)

us(0)

]

(36)

• The integrand decreases exponentially if one of r, z, or xop become large. The fact that
the sum is limited within the lattice only has exponentially suppressed effect. We have use
the moment method to take q→0 limit, eliminating that part of the “finite volume” effect.

• However, the integrand have implicit sum over x′, y ′, and z ′. Major finite volume effects
result from these three variables are limited within lattice.

• Solution: do not limit x′, y ′, and z ′ within the QCD box. We can sum over x′, y ′, and
z ′ in much larger QED boxes. We are also working on numerical strategies to compute
the sum in infinite volume. This way, we can capture the major part of the finite volume
effects with the QCD lattice just large enough to contain the quark loop.

-0.09

-0.085

-0.08

-0.075

-0.07

-0.065

-0.06

-0.055

-0.05

-0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

∆
m

 / 
α

Q
ED

1/mL

mL = 4.8

QEDTL, T/L=2
QEDL, T/L=2
QED∞, T/L=2
QED∞, T/L=3

Analytic V=∞ result
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Hadronic Light-by-Light

n 4pt function of EM currents

n No direct experimental data available

n Dispersive approach

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

✕
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Our Basic strategy : 
Lattice QCD+QED system

n 4pt function has too much information to parameterize (?) 

n Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  
is sampled in lattice QCD with chiral quark (Domain-Wall fermion)

n Photon & lepton part of diagram is derived either in lattice QED+QCD 
[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).

l set spacial momentum for 
- external EM vertex q

- in- and out- muon p, p’
q = p-p’

• set time slice of muon 
source(t=0),  sink(t’) and operator (top)

• take large time separation for
ground state matrix element

✕

(0, p) (t’, p’)

(top, q)

muon

3 photons
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Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�

*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnky0, �0 z0, ⌫0 x0, ⇢0

xop, µ

z, ⌫
y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m⇡ = 330 MeV, mµ = 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method [Blum et al 2015]
2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ≠ j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,

Subtraction term

- Connected part only

- QED only  calcula7on consistent 
with QED loop calcula7on for larger 
volume

- QED+QCD
- ball park of model values
-significant exited state effects ?

unsubtracted term
- One photon is treated analytically
- other two sampled stochastically
- needs subtraction 
- use AMA for error reduction
- use Furry’s theoretm to reduce α2 noise

Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ(HLbL) Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Stable as measurements increase (20 ⇥ 40 ⇥ 80 ⇥ 160 configs)
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mµ � 190 MeV

Tom Blum (UConn / RIKEN BNL Research Center) The muon anomalous magnetic moment
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Systematic effects in QED only study

n muon loop, muon line

n a = a mµ / (106 MeV)

n L= 11.9, 8.9, 5.9 fm

n known result :  F2 = 0.371 (diamond) correctly reproduced (good 
check) 

e

a(6)
µ (lbl, e) =

⇧
2
3
⌅2 ln

mµ

me
+

59
270

⌅4 � 3 ⇤(3)

�10
3

⌅2 +
2
3

+ O

⇤
me

mµ
ln

mµ

me

⌅⌃ ��

⌅

⇥3
.⇥’s

µ

⇥

Again a light loop which yields a unexpectedly large contribution

a(6)
µ (lbl, e) ⇤ 20.947 924 89(16)

��
⇥
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Figure 4.6: Plots of our results for the connected light-by-light scattering contribution in

QED to F2(0), known to be 0.371⇥ (↵/⇡)3 [9, 10], as a function of a2 expressed in GeV by

assigningmµ = 106 MeV. This is done for three choices of the physical lattice size L = 11.9 fm

(diamonds), 8.9 fm (squares) and 5.9 fm (circles). The curves shown are quadratic functions

of a2 chosen to pass through the three points for each physical volume. The coe�cients for

each of these fits are listed in Table 4.13.
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Figure 4.7: Results for F2(0) from QED-connected light-by-light scattering. These results

have been extrapolated to the a2 ! 0 limit using two methods. The upper points use the

quadratic fit to all three lattice spacings shown in Fig. 4.6, while the lower point uses a linear

fit to the two leftmost points in that figure. Here we extrapolate to infinite volume using

the linear fits shown to the two, leftmost of the three points in each case.
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Mπ=170 MeV cHLbL result
[ Luchang Jin et al.,PRD93, 014503 (2016) ]

n V=(4.6 fm)3, a = 0.14 fm, mµ=130 MeV, 23 conf

n pair-point sampling with AMA (1000 eigV, 100CG) ,
> 6000 meas/conf
• |x-y| <= 0.7fm, all pairs, x2-5 samples 

217 pairs  (10 AMA-exact)

• |x-y| > 0.7fm,  512 pairs ( 48 AMA-exact)

n 13.2 BG/Q Rack-days

within QED, arising when the internal loop is a muon, working at three values for the

lattice spacing and three volumes. By extrapolating to vanishing lattice spacing and infinite

volume we obtain a result which agrees with the analytic result within 2%, an accuracy

expected from a combination of statistical and extrapolation uncertainties.

The most successful approach uses exact, analytic formulae for the three photon prop-

agators that appear in the HLbL amplitude and the standard methods of lattice QCD. In

contrast with normal perturbative methods, much of the calculation is performed in position

space and stochastic methods are only introduced to sample position-space sums, reducing

the computational cost so that it grows proportional to the space-time volume instead of its

cube. Because of the structure of the amplitude being computed, we can identify a specific

space-time position within the hadronic part of the amplitude and use that location as the

origin to obtain the anomalous magnetic moment from what is essentially a classical spatial

moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ−2 from

a relatively coarse, 323 × 64 ensemble with 1/a = 1.38 GeV, spatial extent L = 4.6 fm and

pion mass mπ = 171 MeV:

(gµ − 2)cHLbL

2
= (0.1054± 0.0054)(α/π)3 = (132.1± 6.8)× 10−11. (47)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ−2 of (105±26)×10−11 and the difference between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)×

10−11. Equation (47) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the non-zero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insufficiently

well understood to be reliably estimated. A particularly important systematic errors comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (47) with

experiment serves only to give a context for the size of the present statistical errors.

In Section III we have presented a series of numerical tests of many of the different

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (47). We hope that some of these may be useful in the future for the efficient

calculation of other quantities that involve a combination of QED and QCD, a relatively
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Figure 8. Histograms and scatter plots for the contribution to F2 from different separations |r| =

|x− y| are shown in the left and right plots respectively, following the conventions used in similar,

previous figures. The upper two plots are obtained using the conserved version of the exact photon

method on the 32ID ensemble. The lower two plots are obtained using the moment method, but

from approximate propagators each obtained from 100 CG iterations, again on the 32ID ensemble.

with the restriction |z − x| ≥ |x − y| and |z − y| ≥ |x − y| that was described previously,

to the 24I ensemble with mµa = 0.1 in order to compare these methods with the original

subtraction calculation [17] which was carried out on the same ensemble with the same

muon mass. We compute the short distance part up to rmax = 4. For |r| ≤ 2 we compute

each independent direction two times while for 2 < |r| ≤ 4 each independent direction is

computed only once for each configuration. We take many discrete symmetries into account

when summing over the short-distance part, including independent inversions of x, y, z, t,

and exchanges of the x and y directions. For the long-distance part, we did not use the M2

method, but instead directly chose the probability distribution for the point pairs (|r| > 4):

P24IL(r) ∝
1

|r|4
e−0.1|r|. (43)

For the conserved method the propagators are computed with approximate inversions

37

r = min {|x-y|, |y-z|,|z-x|}

Strange contribution : (0.0011� 0.005) (α/π)3

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

xy
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Infinite Volume Photon and Lepton QED1
[Feynman, Schwinger, Tomonaga]

• Instead of, or, in addition to, larger QED box, one could use infinite volume QED to
compute G⇢,�,(x, y, z).

• Hadron part HC
⇢,�,,⌫(x, y, z, xop) has following features due to the mass gap :

. For large distance separation, the 4pt Green function is exponentially
suppressed: HC

⇢,�,,⌫(x, y, z, xop) ⇠ exp[�m⇡ ⇥ dist(x, y, z, xop)]

. For fixed (x, y, z, xop), FV error (wraparound effect etc.) is exponentially
suppressed: HC

⇢,�,,⌫|V � HC
⇢,�,,⌫|1 ⇠ exp[�m⇡ ⇥ L]

• By using QED1 weight function G⇢,�,(x, y, z), which is not exponentially growing,
asymptotic FV correction is exponentially suppressed

�V

2

4
X

x,y,z,xop

G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop)]

3

5 ⇠ exp[�m⇡L]

(xref = (x + y)/2 is at middle of QCD box using transnational invariance)

Taku Izubuchi, Lattice 2017, June 23, 2017 10

QCD box inside a large QED box [L. Jin et al. 1511.05198]

• One could use a larger 4D QED box to compute photon+lepton part of the diagram
G⇢,�,(x, y, z), and compute the hadron part HC

⇢,�,,⌫(x, y, z, xop) in a smaller QCD
box.

• Hadron part could be recycled for different size of QED box, which introduces a
beneficial correlation in taking V ! 1 limit.

• As far as the integral outside of QCD box is small (from exp(�m⇡r) suppression of
hadron 4pt of size r), O(1/L2

) error would be largely suppressed.

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Taku Izubuchi, Lattice 2017, June 23, 2017 8

QCD box inside a large QED box [L. Jin et al. 1511.05198]

• One could use a larger 4D QED box to compute photon+lepton part of the diagram
G⇢,�,(x, y, z), and compute the hadron part HC

⇢,�,,⌫(x, y, z, xop) in a smaller QCD
box.

• Hadron part could be recycled for different size of QED box, which introduces a
beneficial correlation in taking V ! 1 limit.

• As far as the integral outside of QCD box is small (from exp(�m⇡r) suppression of
hadron 4pt of size r), O(1/L2

) error would be largely suppressed.

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Taku Izubuchi, Lattice 2017, June 23, 2017 8

QCD box inside a large QED box [L. Jin et al. 1511.05198]
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G⇢,�,(x, y, z), and compute the hadron part HC

⇢,�,,⌫(x, y, z, xop) in a smaller QCD
box.

• Hadron part could be recycled for different size of QED box, which introduces a
beneficial correlation in taking V ! 1 limit.
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Subtraction using current conservation

• From current conservation, @⇢V⇢(x) = 0, and mass gap, hxV⇢(x)O(0)i ⇠
|x|n exp(�m⇡|x|)

X

x

HC
⇢,�,,⌫(x, y, z, xop) =

X

x

hV⇢(x)V�(y)V(z)V⌫(xop)i = 0

X

z

HC
⇢,�,,⌫(x, y, z, xop) = 0

at V ! 1 and a ! 0 limit (we use local currents).

• We could further change QED weight

G(2)

⇢,�,(x, y, z) = G(1)

⇢,�,(x, y, z) � G(1)

⇢,�,(y, y, z) � G(1)

⇢,�,(x, y, y) + G(1)

⇢,�,(y, y, y)

without changing sum
P

x,y,z G⇢,�,(x, y, z)HC
⇢,�,,⌫(x, y, z, xop).

• Subtraction changes discretization error and finite volume error.

• Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.

• Also now G(2)

�,,⇢(z, z, x) = G(2)

�,,⇢(y, z, z) = 0, so short distance O(a2
) is suppressed.

• The 4 dimensional integral is calculated numerically with the CUBA library cubature
rules. (x, y, z) is represented by 5 parameters, compute on N5 grid points and
interpolates. (|x � y| < 11 fm).

Taku Izubuchi, Lattice 2017, June 23, 2017 13
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Results, QED case, Finite Volume Error
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• QED weight : QEDL (purple diamond), QED1 without subtraction (green plus), with
subtraction (blue square)

• Curves correspond to expected finite volume scaling (0.371 + k/L2) and infinite
volume scaling (0.371 + ke�mL), where the coefficient k is chosen to match the data
at mL = 4.8.

• The right most point for the finite volume weighting function lies a bit off its scaling
curve because the discretization error has not been completely removed, and the
coefficient k does not contain any possible volume dependence.

Taku Izubuchi, Lattice 2017, June 23, 2017 17



(g-2)μ SM Theory  vs  experiment

n QED, EW, Hadronic contributions

n Discrepancy between EXP and SM is larger than EW!
n Currently the dominant uncertainty comes from HVP, followed by HLbL

n x4 or more accurate experiment  FNAL , J-PARC
n Our Goal :  sub 1% accuracy for HVP, and 

→ 10% accuracy for HLbL

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003
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QED box in QCD box (contd.)

n Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV

(16)n 3 = (1.8 fm)3 QCD box in (24)3= (2.7 fm)3 QED box
423MeV Pion 163

× 32 Lattice V.S. 243
× 64 Lattice 30/36

Ensemble mπ L QCD Size QED Size
F2(q2 = 0)
(α/π)3

16I 3.87 163× 32 163× 32 0.1158(8)
24I 5.81 243× 64 243× 64 0.2144(27)

16I-24 163× 32 243× 64 0.1674(22)

Table 4. arXiv:1511.05198. Finite volume effects studies. a−1 = 1.747 GeV, mπ = 423 MeV,
mµ = 332MeV.

• Large finite volume effects with these ensembles and muon mass.

• Increasing the QED box size help reducing the finite volume effect, but haven’t completely
fixed the problem.

• Suggesting significant QCD finite volume effect.

• The histogram plot may help us further investigating this QCD finite volume effect.

72

the opposite of this choice, which can provide more information about QCD finite-volume

e↵ects:

Z0(x, y, z) =

8
>>>>>>><

>>>>>>>:

3 if |x� y| > |x� z| and |x� y| > |y � z|

3/2 if |x� y| = |x� z| > |y � z| or |x� y| = |y � z| > |x� z|

1 if |x� y| = |x� z| = |y � z|

0 otherwise

.(5.2)

With this choice, in the small r region, the distances between x, y, z are all short, so the

QCD finite volume e↵ects should be small. The right plot of Figure 5.5 suggest that it is

indeed the case. In the small r region, where we control the QCD finite volume e↵ects,

the result from the 16I QCD/24 QED calculation agrees very well with 24I. However, as |r|

becomes larger, the quark loop evaluated in 16I is a↵ected by the boundary and begins to

deviate from the 24I results. Note because we use periodic boundary conditions for the quark

propagators, the maximum spatial separation between source and sink in any direction is 8

for quark propagators on the 16I lattice.

Figure 5.5: The plots show histograms of the contribution to F2 from di↵erent separations

|r| = |x � y|. The sum of all these points gives the final result for F2. The vertical lines at

|r| = 5 in the plots indicate the value of rmax. The left plot is evaluated with Z, so the small

r region includes most of the contribution. The right plot is evaluated with Z0 in place of Z,

so the QCD finite volume is better controlled in the small r region.
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physical Mπ=140 MeV cHLbL result
[ Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005 ]

n V=(5.5 fm)3, a = 0.11 fm, mµ=106 MeV, 69 conf [RBC/UKQCD]

n Two stage AMA (2000 eigV, 200CG and 400 CG)  using zMobius,      
~4500 meas/conf

n 160 BG/Q Rack-days139MeV Pion 483
× 96 Lattice 32/36
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Figure 21. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. The left plot
is evaluated with z sumed over longer distance region, so the small r region includes most of the
contribution. The right plot is evaluated with z sumed over longer distance region, so the QCD finite
volume is better controlled in the small r region.

• Contribution vanishes long before reaching the boundary of the lattice.

• Suggesting the QCD finite volume effects be small in this case.

• Simply increasing the QED box will fix most of the finite volume effects.

r = min {|x-y|, |y-z|,|z-x|} r = max{|x-y|, |y-z|,|z-x|}

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

(preliminary, 
stat err only)

integrand safely suppressed before
reaching   r ~  L/20.6 fm

y x

aLbL, conµ = (0.0926± 0.0077)⇥
⇣↵
⇡

⌘3
= (11.60± 0.96)⇥ 10�10,

0.7 fm 0.7 fm
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Disconnected diagrams in HLbL

n Disconnected diagrams

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85
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Continuum Infinite Volume
( a.k.a HVP way )               .  

n One could also use infinite volume/continuum lepton&photon
diagram in coordinate space
[ J. Green et al. Mainz group, LAT16 proceedings]

n Techniques in continuum model calculation [ Knect Nyffeler 2002; 
Jegerlehner Nyffeler 2009 ] : angle average over muon momentum, 
and carry out angle of two virtual photons 

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

x,μ y,λ0, ν

x,μ z, ν
y,λ

p
ρ’σ’
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Direct 4pt calculation for selected 
kinematical range

[ J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003( 2015)] 

Compute connected contribution of 4 n pt function in momentum space

Forward amplitudes related to n �*(Q1)�*(Q2) -> hadron cross section via 
dispersion relation

solid curve: model predictionn

π0 n exchange is seen to be not dominant,
possibly due to heavy quark mass 
in the simulation (Mπ = 324 MeV) 

disconnected quark diagram loopn

in progress in 2016

3
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FIG. 3. The forward scattering amplitude MTT at a fixed
virtuality Q2

1 = 0.377GeV2, as a function of the other photon
virtuality Q2

2, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f1,2 and all values of {µa}
and X4. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X3. Then,
it is combined with the function f1 or f2 to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f1 and f2.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f1 and f2, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, fa(X) = e�iPa·X and
compute the Fourier modes with respect to X4. Thus,
⇧E

µ1µ2µ3µ4
(P4;P1, P2) can be evaluated e�ciently at fixed

P1,2 for all P4 available on the lattice.

FIG. 4. The dependence of the amplitude MTT on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m⇡ = 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J l

µ is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, MTT(�Q2

1,�Q2
2, ⌫)�MTT(�Q2

1,�Q2
2, 0)

(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q2

2 to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q2

1, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q2

2 was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.
We compare the lattice data with results from the sum

rule, Eq. (10), using a phenomenological model for the
transverse �⇤�⇤ ! hadrons cross section, �0 + �2, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡+⇡� states [19] (using
scalar QED dressed with form factors). The �⇤�⇤ !
meson form factors have not been measured experi-

Mhad (�
⇤(Q1)�

⇤(Q2) ! �⇤(Q1)�
⇤(Q2))

$ �0,2 (�
⇤(Q1)�

⇤(Q2) ! had.)

Direct calculation of hadronic light-by-light scattering Jeremy Green

we compute the local-conserved-conserved-conserved four-point function. In position space:

Ppos
µ1µ2µ3µ4(x1,x2,0,x4) =

D
Jl

µ3
(0)

h
Jc

µ1
(x1)Jc

µ2
(x2)Jc

µ4
(x4)+dµ1µ2dx1x2Tµ1(x1)Jc

µ4
(x4)

+dµ1µ4dx1x4Tµ4(x4)Jc
µ2
(x2)+dµ2µ4dx2x4Tµ4(x4)Jc

µ1
(x1)

+dµ1µ4dµ2µ4dx1x4dx2x4Jc
µ4
(x4)

iE
,

(2.2)

where the contact terms ensure that this satisfies the conserved-current Ward identities using the
backward lattice derivative D,

Dx1
µ1

Ppos
µ1µ2µ3µ4 = Dx2

µ2
Ppos

µ1µ2µ3µ4 = Dx4
µ4

Ppos
µ1µ2µ3µ4 = 0. (2.3)

In our implementation, we have verified that these hold on each gauge configuration.

Figure 2: The five classes of quark contractions for four-point functions. In this work, we compute only the
leftmost, fully-connected set of contractions.

There are five classes of quark contractions (Fig. 2) required to evaluate the four-point func-
tion. We evaluate only the fully-connected ones, with fixed kernels summed over x1 and x2:

Ppos0

µ1µ2µ3µ4(x4; f1, f2) = Â
x1,x2

f1(x2) f2(x2)Ppos
µ1µ2µ3µ4(x1,x2,0,x4). (2.4)

Using fixed kernels allows this to be evaluated using the combination of a point-source propagator
from the origin, and single- and double-sequential propagators that contain one or both of the
kernels. If we define Jµ(x) and Tµ(x) to be the point-split insertions in Eq. (2.1), then these three
kinds of propagators are

S0(x) ⌘ S(x,0), S f µ ⌘ S

Â
x

f (x)Jµ(x)S0

�
,

S f µ;gn ⌘ S

Â
x

f (x)Jµ(x)Sgn +Â
x

g(x)Jn(x)S f µ +dµn Â
x

f (x)g(x)Tµ(x)S0

�
,

(2.5)

and, noting that Jµ(x) is g5-antihermitian and Tµ(x) is g5-hermitian, the connected four-point
function is obtained as

Ppos0,conn
µ1µ2µ3µ4(x4; f1, f2) = �

D
Tr
⇣

gµ3g5

h
S†

f ⇤
1 µ1; f ⇤

2 µ2
g5Jµ4(x4)S0 +S†

0g5Jµ4(x4)S f1µ1; f2;µ2

�S†
f ⇤
2 µ2

g5Jµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Jµ4(x4)S f2µ2

+dµ1µ4 f1(x4)
�
S†

0g5Tµ4(x4)S f2µ2 �S†
f ⇤
2 µ2

g5Tµ4(x4)S0
�

+dµ2µ4 f2(x4)
�
S†

0g5Tµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Tµ4(x4)S0
�

+dµ1µ4dµ2µ4 f1(x4) f2(x4)S†
0g5Jµ4(x4)S0

i⌘E
.

(2.6)

3

Q1

Q2

Q1

Q2

114



Dispersive approach for HLbL
[ Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ]

n Using crossing symmetry, gauge invariance, 138 form factors are 
reduced 12 relevant for HLbL

n π0, �,�’ exchange,  pion-loop (exactly scalar QED with pion Form 
factor)

n other contribution is neglected

and the ⇧̂i are needed for the reduced kinematics

s = (q1 + q2)
2
, t = q

2

2
, u = q

2

1
, q

2

1
, q

2

2
, q

2

3
= (q1 + q2)

2
, k

2 = q
2

4
= 0. (4.20)

The explicit result of the trace calculation and the contraction of the Lorentz indices is given in App. E.1.
We can reduce the number of terms contributing to (g � 2)µ further by using the symmetry under the

exchange of the momenta q1 $ �q2: the loop integration measure and the product of propagators are invariant
under this transformation, while the kernels T̂i transform under q1 $ �q2 as

T̂1  ! T̂1, T̂2  ! T̂3, T̂4  ! T̂4, T̂5  ! T̂6,

T̂7  ! T̂8, T̂9  ! T̂12, T̂10  ! T̂13, T̂11  ! T̂14,

T̂15  ! T̂15, T̂16  ! T̂16, T̂17  ! T̂18, T̂19  ! �T̂19. (4.21)

For the reduced kinematics (4.20) the exchange q1 $ �q2 is equivalent to the crossing transformation t $ u,
q
2

1
$ q

2

2
. With the help of the crossing relations of the scalar functions ⇧i, it is easy to check that the ⇧̂i

transform analogously to the kernels T̂i, i.e.

⇧̂1  ! ⇧̂1, ⇧̂2  ! ⇧̂3, ⇧̂4  ! ⇧̂4, ⇧̂5  ! ⇧̂6,

⇧̂7  ! ⇧̂8, ⇧̂9  ! ⇧̂12, ⇧̂10  ! ⇧̂13, ⇧̂11  ! ⇧̂14,

⇧̂15  ! ⇧̂15, ⇧̂16  ! ⇧̂16, ⇧̂17  ! ⇧̂18, ⇧̂19  ! �⇧̂19. (4.22)

Therefore, it is convenient to write the HLbL contribution to (g � 2)µ as a sum of 12 terms:

a
HLbL

µ = �e
6

Z
d
4
q1

(2⇡)4
d
4
q2

(2⇡)4
1

q
2

1
q
2

2
(q1 + q2)2

1

(p + q1)2 �m2
µ

1

(p� q2)2 �m2
µ

⇥

12X

j=1

⇠j T̂ij (q1, q2; p)⇧̂ij (q1, q2,�q1 � q2), (4.23)

where

{ij |j = 1, . . . , 12} = {1, 2, 4, 5, 7, 9, 10, 14, 15, 16, 17, 19},

{⇠j |j = 1, . . . , 12} = {1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1}. (4.24)

Note that the first two terms in this sum correspond to the well-known result for the pion-pole contribution [19]
(up to conventions: exchange of T̂1 and T̂2, the explicit factor ⇠2 = 2, and symmetrization of T̂1).

In (4.23), the integrand depends on the five scalar products q
2

1
, q

2

2
, q1·q2, p·q1, and p·q2, where the dependence

on the last two is given explicitly (the scalar functions only depend on q
2

1
, q

2

2
, and q1 · q2). Therefore, five of

the eight integrals can be performed without knowledge of the scalar functions. The same integrals as in the
case of the pion-pole contribution occur [3, 19], which have been solved with the technique of Gegenbauer
polynomials [50]. This method has been applied before to the full HLbL contribution in the context of vector-
meson-dominance and hidden-local-symmetry models [51, 52].

We perform a Wick rotation of the momenta q1, q2, and p (see Sect. 4.4) and denote the Wick-rotated
Euclidean momenta by capital letters Q1, Q2, and P . Note that Q

2

1
= �q

2

1
, Q

2

2
= �q

2

2
, P

2 = �m
2

µ. Since a
HLbL

µ

is a pure number, it does not depend on the direction of the momentum P of the muon, hence we can take the
angular average by integrating over the four-dimensional hypersphere:

a
HLbL

µ =

Z
d⌦4(P )

2⇡2
a
HLbL

µ . (4.25)

21

Digression: why we disagree with Arkady

=
Fπ0γ∗γ∗(q2

1 , q
2
2)Fπ0γ∗γ∗(q2

3 , q
2
4)

s − M2
π

Separation into subproblems:

1 Dispersive reconstruction of the full HLbL tensor ⇒ Mandelstam variables s, t, u and

general, fixed virtualities q2
i

2 Perform limit q4 → 0, then momentum integrals in g − 2

↪→ pion pole completely unambiguous in this framework

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 11

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 12
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Measurement of decay positron

116

ωp rotation
ωs rotation

��Spin is toward momentum:
àmore e+ detected

��Spin is opposite to momentum:
àless e+ detected

Uniform B-field

e+

Positron detector



- p. 117/62
B. L.  Roberts,  Fermilab , 3 September 2008 - p. 117/68

Inflector

Kicker 
Modules

Storage
ring

Central  orbit
Injection orbit

Pions

-π

p=3.1GeV/c

Experimental Technique

B
!

• Muon polarization
• Muon storage ring
• injection & kicking
• focus with  Electric Quadrupoles
• 24 electron calorimeters R=711.2cm

d=9cm

(1.45T)

Electric Quadrupoles

xc ≈ 77 mm
b ≈ 10 mrad
B·dl ≈ 0.1 Tm

xc

R

R b

Target

narrow bunch of 
protons

~µ

�	������������
���
�

BNL & FNAL

[ Slide from L. Roberts ] 



Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣↵
⇡

⌘2
Z 1

0

dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Qi  ̄(x)�
µ (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice�

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 

n  Vector current  2pt function 
 

 

n  Low Q2, or long distance, part of �(Q2)  is   relevant for g-2 

  

 

 

 

	�

[	T.	Blum	PRL91	(2003)	052001	]�
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(plan B) Interplays between lattice 
and dispersive approach  g-2�

n  Dispersive approach from R-ratio  R(s) 
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also	[	ETMC,	Mainz,	...	]	� 45	
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Current conservation, subtraction, 
and coordinate space representation�

n  Current conservation =>  transverse tensor 

 
 

n  Coordinate space  vector 2 pt Green function C(t) is directly 
related to subtracted �(Q2)   [  Bernecker-Meyer 2011, ... ]� 

 

n  g-2 value is also related to C(t) with know kernel w(t) from QED. 

 

 

 

 

Approaches to the long-distance noise problem:

I HPQCD 2016: only uses lattice data up to 0.5fm–1.5fm,
beyond that multi-exponentials from fit

I RBC in progress: improved stochastic estimator
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(plan B)   Interplay between 
Lattice and Experiment

n Check consistency between Lattice and R-ratio

n Short distance from Lattice, Long distance from R-ratio :   
error <= 1 %  at tlat/exp = 2fm

2.2 fm
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2016 : Disconnected,  charm,  QED, isospin breaking effects are being included

( RBC/UKQCD C. Lehner et al,  also other collaborations )

0.7 % error 



n Fermion’s energy in the external magnetic field:

n Magnetic moment and spin gl : Lande g-factor

gl’s deviation from tree level value, 2 :

n

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e s⃗l

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)

Date: July 4, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)

Date: July 4, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e s⃗l

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)

Date: July 4, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

After quantum correction ⇒

2 N. YAMADA

V (x) = −µ⃗l · B⃗(9)

µ⃗l = gl
e

2ml
S⃗l(10)

al =
gl − 2

2
(11)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(12)

F1(q
2) = 1, F2(q

2) = 0(13)

F1(0) = 1, F2(0) = al(14)
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Anomalous magnetic moment
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Formulation

! Magnetic property of lepton can be studied through examining its scattering
by a static magnetic field.
The amplitude can be represented as:

eū(p′′)

[
γµ F1(q

2) +
i

2m
σµν qν F2(q

2)

]
u(p′)Ae

µ(q⃗)

p′p′′

q

! The anomalous magnetic moment is the static limit of the magnetic form
factor F2(q

2):

aℓ = F2(0) = Z2M, M = lim
q2→0

Tr(Pν(p, q)Γ
ν)

where Γν is the proper vertex function with the external lepton on the mass
shell, and Pν(p, q) is the magnetic projection operator.
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method

n [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config.

n [moment method , q2→0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show

to directly get F2(0) without extrapolation.
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EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)
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Mπ=170 MeV cHLbL result (contd.)

“Exact” ... q = 2pi / L, 

“Conserved (current)” ... q=2pi/L, 3 diagrams
“Mom” ... moment method q->0, with AMA

Method F2/(α/π)3 Nconf Nprop

√
Var rmax SD LD ind-pair

Exact 0.0693(218) 47 58 + 8× 16 2.04 3 −0.0152(17) 0.0845(218) 0.0186

Conserved 0.1022(137) 13 (58 + 8× 16)× 7 1.78 3 0.0637(34) 0.0385(114) 0.0093

Mom. (approx) 0.0994(29) 23 (217 + 512) × 2× 4 1.08 5 0.0791(18) 0.0203(26) 0.0028

Mom. (corr) 0.0060(43) 23 (10 + 48) × 2× 4 0.44 2 0.0024(6) 0.0036(44) 0.0045

Mom. (tot) 0.1054(54) 23

Table VIII. Results from three variants of the exact photon method obtained from the 32ID ensem-

ble. The first row, labeled “Exact”, corresponds to the row labeled 32ID in Tab. VI. The second

row, labeled “Conserved” is similar except all three arrangements of the vertices x, y and z are

combined insuring that the external current is conserved on each configuration. The final three

rows are obtained from the moment method and are explained in the text.

while the preceding two rows “Mom. (approx)” and “Mom. (corr)” show separately the

approximate AMA results and the needed correction term. The “SD” and “LD” columns

give the results from the pairs with |r| ≤ rmax and |r| > rmax, respectively. The “ind-

pair” column gives the error that would be expected if the long-distance pairs were truly

independent. Note that the quantity F2(q2) is computed at q2 = (2π/L)2 for the first two

rows and at q2 = 0 for the final three rows. The final error shown for the moment method

on the fifth line of Tab. VIII is obtained by applying the jackknife method to the sum of

the approximate AMA result and the AMA correction term. The resulting error is similar

to what would be found were the statistical error on the approximate and correction terms

computed separately and added in quadrature.

We should emphasize that the moment-method result given in the final line of Tab. VIII

is the most important numerical result presented in this paper. It provides the cHLbL

contribution (calculated directly at q2 = 0) to g − 2 for the muon with a 5% statistical

accuracy for the case of a pion with mπ = 171 MeV using a (4.6 fm)3 spatial volume but

with a relatively coarse lattice spacing a with 1/a = 1.378 GeV. More information about the

conserved and moment method calculations presented in Tab. VIII can be found in Fig. 8

where histograms and scatter plots are presented as functions of the separation of the two

stochastically chosen points x and y.

As a final topic in this section we apply the conserved method and the moment method,
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Direct 4pt calculation for selected 
kinematical range

[ J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003( 2015)] 

Compute connected contribution of 4 n pt function in momentum space

Forward amplitudes related to n �*(Q1)�*(Q2) -> hadron cross section via 
dispersion relation

solid curve: model predictionn

π0 n exchange is seen to be not dominant,
possibly due to heavy quark mass 
in the simulation (Mπ = 324 MeV) 

disconnected quark diagram loopn

in progress in 2016
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FIG. 3. The forward scattering amplitude MTT at a fixed
virtuality Q2

1 = 0.377GeV2, as a function of the other photon
virtuality Q2

2, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f1,2 and all values of {µa}
and X4. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X3. Then,
it is combined with the function f1 or f2 to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f1 and f2.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f1 and f2, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, fa(X) = e�iPa·X and
compute the Fourier modes with respect to X4. Thus,
⇧E

µ1µ2µ3µ4
(P4;P1, P2) can be evaluated e�ciently at fixed

P1,2 for all P4 available on the lattice.

FIG. 4. The dependence of the amplitude MTT on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m⇡ = 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J l

µ is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, MTT(�Q2

1,�Q2
2, ⌫)�MTT(�Q2

1,�Q2
2, 0)

(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q2

2 to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q2

1, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q2

2 was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.
We compare the lattice data with results from the sum

rule, Eq. (10), using a phenomenological model for the
transverse �⇤�⇤ ! hadrons cross section, �0 + �2, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡+⇡� states [19] (using
scalar QED dressed with form factors). The �⇤�⇤ !
meson form factors have not been measured experi-

Mhad (�
⇤(Q1)�

⇤(Q2) ! �⇤(Q1)�
⇤(Q2))

$ �0,2 (�
⇤(Q1)�

⇤(Q2) ! had.)

Direct calculation of hadronic light-by-light scattering Jeremy Green

we compute the local-conserved-conserved-conserved four-point function. In position space:

Ppos
µ1µ2µ3µ4(x1,x2,0,x4) =

D
Jl

µ3
(0)

h
Jc

µ1
(x1)Jc

µ2
(x2)Jc

µ4
(x4)+dµ1µ2dx1x2Tµ1(x1)Jc

µ4
(x4)

+dµ1µ4dx1x4Tµ4(x4)Jc
µ2
(x2)+dµ2µ4dx2x4Tµ4(x4)Jc

µ1
(x1)

+dµ1µ4dµ2µ4dx1x4dx2x4Jc
µ4
(x4)

iE
,

(2.2)

where the contact terms ensure that this satisfies the conserved-current Ward identities using the
backward lattice derivative D,

Dx1
µ1

Ppos
µ1µ2µ3µ4 = Dx2

µ2
Ppos

µ1µ2µ3µ4 = Dx4
µ4

Ppos
µ1µ2µ3µ4 = 0. (2.3)

In our implementation, we have verified that these hold on each gauge configuration.

Figure 2: The five classes of quark contractions for four-point functions. In this work, we compute only the
leftmost, fully-connected set of contractions.

There are five classes of quark contractions (Fig. 2) required to evaluate the four-point func-
tion. We evaluate only the fully-connected ones, with fixed kernels summed over x1 and x2:

Ppos0

µ1µ2µ3µ4(x4; f1, f2) = Â
x1,x2

f1(x2) f2(x2)Ppos
µ1µ2µ3µ4(x1,x2,0,x4). (2.4)

Using fixed kernels allows this to be evaluated using the combination of a point-source propagator
from the origin, and single- and double-sequential propagators that contain one or both of the
kernels. If we define Jµ(x) and Tµ(x) to be the point-split insertions in Eq. (2.1), then these three
kinds of propagators are

S0(x) ⌘ S(x,0), S f µ ⌘ S

Â
x

f (x)Jµ(x)S0

�
,

S f µ;gn ⌘ S

Â
x

f (x)Jµ(x)Sgn +Â
x

g(x)Jn(x)S f µ +dµn Â
x

f (x)g(x)Tµ(x)S0

�
,

(2.5)

and, noting that Jµ(x) is g5-antihermitian and Tµ(x) is g5-hermitian, the connected four-point
function is obtained as

Ppos0,conn
µ1µ2µ3µ4(x4; f1, f2) = �

D
Tr
⇣

gµ3g5

h
S†

f ⇤
1 µ1; f ⇤

2 µ2
g5Jµ4(x4)S0 +S†

0g5Jµ4(x4)S f1µ1; f2;µ2

�S†
f ⇤
2 µ2

g5Jµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Jµ4(x4)S f2µ2

+dµ1µ4 f1(x4)
�
S†

0g5Tµ4(x4)S f2µ2 �S†
f ⇤
2 µ2

g5Tµ4(x4)S0
�

+dµ2µ4 f2(x4)
�
S†

0g5Tµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Tµ4(x4)S0
�

+dµ1µ4dµ2µ4 f1(x4) f2(x4)S†
0g5Jµ4(x4)S0

i⌘E
.

(2.6)
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Q2

Q1
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Dispersive approach for HLbL
[ Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ]

n Using crossing symmetry, gauge invariance, 138 form factors are 
reduced 12 relevant for HLbL

n π0, �,�’ exchange,  pion-loop (exactly scalar QED with pion Form 
factor)

n other contribution is neglected

and the ⇧̂i are needed for the reduced kinematics

s = (q1 + q2)
2
, t = q

2

2
, u = q

2

1
, q

2

1
, q

2

2
, q

2

3
= (q1 + q2)

2
, k

2 = q
2

4
= 0. (4.20)

The explicit result of the trace calculation and the contraction of the Lorentz indices is given in App. E.1.
We can reduce the number of terms contributing to (g � 2)µ further by using the symmetry under the

exchange of the momenta q1 $ �q2: the loop integration measure and the product of propagators are invariant
under this transformation, while the kernels T̂i transform under q1 $ �q2 as

T̂1  ! T̂1, T̂2  ! T̂3, T̂4  ! T̂4, T̂5  ! T̂6,

T̂7  ! T̂8, T̂9  ! T̂12, T̂10  ! T̂13, T̂11  ! T̂14,

T̂15  ! T̂15, T̂16  ! T̂16, T̂17  ! T̂18, T̂19  ! �T̂19. (4.21)

For the reduced kinematics (4.20) the exchange q1 $ �q2 is equivalent to the crossing transformation t $ u,
q
2

1
$ q

2

2
. With the help of the crossing relations of the scalar functions ⇧i, it is easy to check that the ⇧̂i

transform analogously to the kernels T̂i, i.e.

⇧̂1  ! ⇧̂1, ⇧̂2  ! ⇧̂3, ⇧̂4  ! ⇧̂4, ⇧̂5  ! ⇧̂6,

⇧̂7  ! ⇧̂8, ⇧̂9  ! ⇧̂12, ⇧̂10  ! ⇧̂13, ⇧̂11  ! ⇧̂14,

⇧̂15  ! ⇧̂15, ⇧̂16  ! ⇧̂16, ⇧̂17  ! ⇧̂18, ⇧̂19  ! �⇧̂19. (4.22)

Therefore, it is convenient to write the HLbL contribution to (g � 2)µ as a sum of 12 terms:

a
HLbL

µ = �e
6

Z
d
4
q1

(2⇡)4
d
4
q2

(2⇡)4
1

q
2

1
q
2

2
(q1 + q2)2

1

(p + q1)2 �m2
µ

1

(p� q2)2 �m2
µ

⇥

12X

j=1

⇠j T̂ij (q1, q2; p)⇧̂ij (q1, q2,�q1 � q2), (4.23)

where

{ij |j = 1, . . . , 12} = {1, 2, 4, 5, 7, 9, 10, 14, 15, 16, 17, 19},

{⇠j |j = 1, . . . , 12} = {1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1}. (4.24)

Note that the first two terms in this sum correspond to the well-known result for the pion-pole contribution [19]
(up to conventions: exchange of T̂1 and T̂2, the explicit factor ⇠2 = 2, and symmetrization of T̂1).

In (4.23), the integrand depends on the five scalar products q
2

1
, q

2

2
, q1·q2, p·q1, and p·q2, where the dependence

on the last two is given explicitly (the scalar functions only depend on q
2

1
, q

2

2
, and q1 · q2). Therefore, five of

the eight integrals can be performed without knowledge of the scalar functions. The same integrals as in the
case of the pion-pole contribution occur [3, 19], which have been solved with the technique of Gegenbauer
polynomials [50]. This method has been applied before to the full HLbL contribution in the context of vector-
meson-dominance and hidden-local-symmetry models [51, 52].

We perform a Wick rotation of the momenta q1, q2, and p (see Sect. 4.4) and denote the Wick-rotated
Euclidean momenta by capital letters Q1, Q2, and P . Note that Q

2

1
= �q

2

1
, Q

2

2
= �q

2

2
, P

2 = �m
2

µ. Since a
HLbL

µ

is a pure number, it does not depend on the direction of the momentum P of the muon, hence we can take the
angular average by integrating over the four-dimensional hypersphere:

a
HLbL

µ =

Z
d⌦4(P )

2⇡2
a
HLbL

µ . (4.25)

21

Digression: why we disagree with Arkady

=
Fπ0γ∗γ∗(q2

1 , q
2
2)Fπ0γ∗γ∗(q2

3 , q
2
4)

s − M2
π

Separation into subproblems:

1 Dispersive reconstruction of the full HLbL tensor ⇒ Mandelstam variables s, t, u and

general, fixed virtualities q2
i

2 Perform limit q4 → 0, then momentum integrals in g − 2

↪→ pion pole completely unambiguous in this framework

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 11

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 12
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Continuum Infinite Volume
( a.k.a HVP way )               .  

n One could also use infinite volume/continuum lepton&photon
diagram in coordinate space
[ J. Green et al. Mainz group, LAT16 proceedings]

n Techniques in continuum model calculation [ Knect Nyffeler 2002; 
Jegerlehner Nyffeler 2009 ] : angle average over muon momentum, 
and carry out angle of two virtual photons 

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

x,μ y,λ0, ν

x,μ z, ν
y,λ

p
ρ’σ’

4

In summary,

L(x1, x2) =
X

m,l

l+mX

k=|l�m|
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(�1)kCk(x̂1x̂2) (31)
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Q6
1Q
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2

✓
Q2
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(Z1Z2)l+1

Q4
1Q

6
2

✓
Q1

Q2

◆m

Jk+1(Q1X1)Jk+1(Q2X2)
i

(36)

where

Zi =
Q2

i + 2m2 �
p
(Q2

i + 2m2)2 � 4m2Q2
i

2mQi
(37)

=
2mQi

Q2
i + 2m2 +

p
(Q2

i + 2m2)2 � 4m2Q2
i

(38)

It seems L(x1, x2) = L(x2, x1) I am puzzled why this is not x1 $,�x2, perhaps

indicating some mistake or a funny convention in Fourier transform. Also there

may be a way to make this nested 2 dim integral as a product of two 1-dim

integral, but can’t find so far.,

III. LBL

Proj⇢�(p) =
1

48m
(/p+m)[�⇢, ��](/p+m) , (39)

Lepµ⌫�(p; q1, q2) =
1

q21q
2
2(q1 + q2)2

⇥ 1

(p� q1)2 �m2

1

(p� q1 � q2)2 �m2

⇥ �µ(/p� /q1 +m)�⌫(/p� /q1 � /q2 +m)�� , (40)

F̂2(0) = �ie6
Z

d4q1
(2⇡)4

Z
d4q2
(2⇡)4

tr


Proj⇢�(p)Lepµ⌫�(p; q1, q2)

@

@k⇢
⇧µ⌫��(q1, q2, q3)

�
.

(41)
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Can Lattice produce a counter part ?
[ J. Bijnens ]

Status of the
muon g-2

light by light
contribution

Johan Bijnens

Overview

HLbL
General
properties

π
0-exchange

π-loop
Quark-loop
Summary

Future

Conclusions

14/48

π
0 exchange

Which momentum regimes important studied: JB and

J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

aµ =

∫

dl1dl2a
LL
µ with li = log(Pi/GeV )
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Which momentum regions do what:
volume under the plot ∝ aµ
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(plan B) Interplays between lattice and 
dispersive approach  g-2

n R-Ratio error  ~ 0.6%, HPQCD error ~ 2%
Goal would be n ~ 0.2 %
Dispersive approach from Rn -ratio  R(s)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also [ ETMC, Mainz, ... ] 128



n Can we combine dispersive & lattice and get more precise (g-2)HVP 
than both ?      [ 2011 Bernecker Meyer ]

n Inverse Fourier trans to Euclidean vector correlator
n Relevant for g-2   Q2 = (mµ/2)2 = 0.0025 GeV2

n It may be interesting to think 

0 10 20 30 40 50
t/a

-0.05

0

0.05

0.1

0.15 Disparsive (Q2=0.0025 GeV
2
)

Lattice (Q2 = 0.0025 GeV
2
)

Pihat(Q2)  integrand in coordinate space
Lattice : u,d,s connected, no continuum limit

0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

P
2
 = 0.1 GeV

2

Black : R-ratio , alpha QED (Jegerlehner)
Red : Lattice (DWF)

2.2 fm

129



AMA+MADWF(fastPV)+zMobius accelerations
We utilize  n complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], 
zMobius,  for a better approximation of the sign function.

1/a~2 n GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s
complex varying) ~5 times saving for cost AND memory

The even/odd preconditioning is optimized (n sym2 precondition) to suppress the growth of 
condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

Fast Pauli Villars n (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D  
[Edward, Heller]

All in all, sloppy solve compared to the traditional CG is n 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) .

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 Ls |eps(48cube) – eps(zMobius)|
6 0.0124

8 0.00127

10 0.000110

12 8.05e-6
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n O(imp) has smaller error
O(appx) need to be cheap & not to be too 
accurate 
NG suppresses the bulk part of noise cheaply

Expensive  :  infrequently measured Cheap   :  frequently measured 

Lattice 
Symmetry

Covariant Approximation Averaging ( CAA ) 
a new class of Error reduction techniques

[ Blum, TI, Shintani PRD 88 (2013) 094503 ]

Original

unbiased
imporved

ensemble

ensemble 

e

e

+

New bias-free estimator even without covariant
approximation by a stochastic choice of source
location for the exact/rest computation is now
available  :     Appendix D  of  arXiv:1402.0244 
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Examples of Covariant Approximations 
(contd.)

n All Mode Averaging
AMA
Sloppy CG  or
Polynomial 
approximations

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy control :
• low mode part : # of eig-mode
• mid-high mode :  degree of poly.If quark mass is heavy, e.g. ~ strange, 

low mode isolation may be unneccesary 132



SM Theory

n QED, hadronic, EW contributions

+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

QED   (5-loop)
Aoyama et al. 
PRL109,111808 (2012) 

Hadronic vacuum 
polarizaEon (HVP)

Hadronic light-by-light 
(Hlbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

+ + …

+ + + …

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.

�

�

µ µ

�

� �

µ µhad

�

W W

⇤

µ µ

Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.

PoS(LAT2005)353

353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ
! �µ(q) =

✓
�µ F1(q

2) +
i �µ⌫ q⌫
2m

F2(q
2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵

2⇡
= 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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QED calculations

Fine structure constant n �
Experimental input :  anomalous magnetic moment of Electron

ae = 0.001 159 652 180 73(28)  [0.24 ppb] 
[ Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011) ]

Theory input:  10th order QED calculation (+ small had+EW )
[ Aoyama, Hayakawa, Kinoshita, Nio Phys. Rev. D 91, 033006 (2015) ]
�-1 = 137.035 999 1570 (334)  [0.25 ppb]

1+7+72+891+12,672n

more than 13,000  diagrams !

QED contribution: 2nd order term

! 2nd order term comes from 1 Feynman diagram:

A
(2)
1 =

1

2
Schwinger, PR73, 416 (1948)

! With this result, the electron g−2 up to 2nd order becomes:

a
(2)
e = 0.001 161 . . .

which well explained the observed value in the study of Zeeman splitting of
gallium atom by Kusch and Foley in 1947,

ae(KF47) = 0.001 19 (5)
Kusch and Foley, PR72, 1256 (1947); PR74, 250 (1948)

6/55

QED contribution: 4th order term

! 4th order term comes from 7 Feynman diagrams:

Their contributions are known analytically:

A
(4)
1 =

197

144
+

(
1

2
− 3 ln 2

)
ζ(2) +

3

4
ζ(3)

= −0.328 478 965 579 . . .
Petermann, Helv.Phys.Acta 30, 407 (1957)

Sommerfield, PR107, 328 (1957)

! 1 diagram with muon or tau-lepton loop also contributes to mass-dependent
A2 terms. Their numerical values are:

A
(4)
2 (me/mµ) = 5.197 386 67 (26)× 10−7

A
(4)
2 (me/mτ ) = 1.837 98 (34)× 10−9

Elend, PL20, 682 (1966)

Samuel and Li, PRD44, 3935 (1991); 46, 4782(E) (1993); Li, Mendel, and Samuel, PRD47, 1723 (1993)

Passera, J.Phys.G31, R75 (2005)

where the values of the mass ratios used are:
me/mµ = 4.836 331 66 (12)× 10−3, me/mτ = 2.875 92 (26)× 10−4.

Mohr, Taylor Newell, Rev.Mod.Phys.84, 1527 (2012) [CODATA2010]

7/55

QED contribution: 6th order term

! 6th order term receives contributions from 72 Feynman diagrams,
represented by these five types:

Their contributions are analytically known, after almost 30 years of works
that completed in late 1990’s. The numerical values are:

A
(6)
1 = 1.181 241 456 . . .

A
(6)
2 (me/mµ) = −0.000 007 373 941 62 (27)

A
(6)
2 (me/mτ ) = −0.000 000 065 830 (11)

A
(6)
3 (me/mµ,me/mτ ) = 0.000 000 000 000 190 9 (1)

Magnaco and Remiddi, Nuovo Cim.A60, 519 (1969)

Barbieri, Remiddi, PLB49, 468 (1974); Barbieri, Caffo, and Remiddi, PLB57, 460 (1975)

Levine, Remiddi, and Roskies, PRD20, 2068 (1979); Laporta and Remiddi, PLB265, 182 (1991); 390, 390 (1995)

Laporta, PRD47, 4793 (1993); PLB343, 421 (1995)

Laporta and Remiddi, PLB379, 283 (1996)

Laporta, Nuovo Cim.A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993)

8/55

QED contribution: 8th order term

! There are 891 Feynman diagrams contributing to 8th order term. They are
classified into 13 gauge-invariant groups.

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

! They are mostly evaluated by numerical means. The latest result of the

mass-independent term A
(8)
1 is

A
(8)
1 = −1.912 98 (84)

Caffo, Turrini, Remiddi, PRD30, 483 (1984)

Remiddi, Sorella, Lett.Nuovo Cim.44, 231 (1985)

Kinoshita and Lindquist, PRD27, 867 (1983); PRD27, 877 (1987);

PRD27, 886 (1983); PRD39, 2407 (1989); PRD42, 636 (1990)

Kinoshita and Nio, PRL90, 021803 (2003)

Kinoshita and Nio, PRD73, 013003 (2006)

TA, Hayakawa, Kinoshita, Nio, PRL99, 110406 (2007); PRD77, 053012 (2008)

TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012)

TA, Hayakawa, Kinoshita, Nio, PRD91, 033006 (2015)

10/55

QED contribution: 10th order term

! 12 672 Feynman diagrams contribute to 10th order term.
They are classified into 32 gauge invariant sets within 6 supersets.

12/55
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Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵

2⇡
= 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD



Diagrams: 389 independent integrals for 10th-order Set V

32/55

135



(g-2)μ SM Theory  vs  experiment

n QED, EW, Hadronic contributions

n Discrepancy between EXP and SM is larger than EW!
n Currently the dominant uncertainty comes from HVP, followed by HLbL

n x4 or more accurate experiment  FNAL , J-PARC
n Our Goal :  sub 1% accuracy for HVP, and 

→ 10% accuracy for HLbL

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003
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G-2  from BSM sources

137

n Typical new particle contribute g-2   
g-2  ~ C  (mµ / mNP)2

n To explain current discrepancy

n SUSY (scalar-lepton )
n 2 Higgs doublet models 

Type-X, ….
n Dark photons 

from kinematical mixings
� Fµ� F�µ�

New Physics contributions to the muon g � 2

Define:

�aµ = aexp
µ � aSM

µ = (290± 90)⇥ 10�11 (Jegerlehner, AN ’09)

Absolute size of discrepancy is actually unexpectedly large, compared to weak
contribution (although there is some cancellation there):

aweak
µ = aweak, (1)

µ (W ) + aweak, (1)
µ (Z) + aweak, (2)

µ

= (389� 194� 41)⇥ 10�11

= 154⇥ 10�11

Assume that New Physics contribution with MNP � mµ decouples:

aNP
µ = C

m2
µ

M2
NP

where naturally C = ↵
⇡ , like from a one-loop QED diagram, but with new

particles. Typical New Physics scales required to satisfy aNP
µ = �aµ:

C 1 ↵
⇡ (↵⇡ )

2

MNP 2.0+0.4
�0.3 TeV 100+21

�13 GeV 5+1
�1 GeV

Therefore, for New Physics model with particles in 250� 300 GeV mass range
and electroweak-size couplings O(↵), we need some additional enhancement
factor, like large tan� in the MSSM, to explain the discrepancy �aµ.

aµ: Supersymmetry
Supersymmetry for large tan�, µ > 0:

a
SUSY
µ ⇡ 123⇥ 10�11

✓
100 GeV

MSUSY

◆2

tan�

(Czarnecki, Marciano, 2001) ⌫̃

�̃ �̃

a)

�̃
0

µ̃ µ̃

b)

Explains �aµ = 290⇥ 10�11 if MSUSY ⇡ (93� 414) GeV (2 < tan� < 40).

In some regions of parameter space, large 2-loop contributions (2HDM):

h,Aµ

�

h,A �

⌧, b

µ µ

�

W
H

µ
⌫µ

�

W

H
µ

Z

�a) b) c) d)

Barr-Zee diagram (b) yields enhanced contribution, which can exceed 1-loop result.
Enhancement factor m2

b
/m2

µ compensates suppression by ↵/⇡

((↵/⇡)⇥ (m2
b
/m2

µ) ⇠ 4 > 1).

aµ and Supersymmetry after first LHC run

• LHC so far only sensitive to strongly interacting supersymmetric particles, like
squarks and gluinos (ruled out below about 1 TeV).

• Muon g � 2 and SUSY searches at LHC only lead to tension in constrained
MSSM (CMSSM) or NUHM1 / NUHM2 (non-universal contributions to Higgs
masses).

• In general supersymmetric models (e.g. pMSSM10 = phenomenological MSSM
with 10 soft SUSY-breaking parameters) with light neutralinos, charginos and
sleptons, one can still explain muon g � 2 discrepancy and evade bounds from
LHC.

Two-Higgs Doublet Model

Second Higgs doublet well motivated in theory

Promising case: H1 couples to leptons, H2 ≈ HSM to quarks (type X)
recent analyses: [Broggio, Chun, Passera, Patel, Vempati ’14, Ilisie ’15]

µR µLµL

H1

µR µLµL

H1 γ

τ

×⟨H1⟩

∼
y2µ

16π2

m2
µ

M2
H

∼
y2τ

16π2

α

4π

m2
µ

M2
H

Leading!

2HDM type X could be the origin of the observed (30 ± 8)× 10−10

deviation if, e.g., MA ∼ 50 GeV, tanβ ∼ 100!

Dominik Stöckinger Muon (g − 2) Precise and reliable predictions in the 2HDM 4/17

[A. Nyfler ]



Status of dark photon searches

Essentially all of the parameter space in the (m�0 , ")-plane to explain the muon
g � 2 discrepancy has now been ruled out.

From: F. Curciarello, FCCP15, Capri, September 2015
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The Muon g-2 experiments
BNL E821 (-2004)

n measure precession of muon spin very accurately

The role of σhadronic ...

Decay spectrum: electrons of energy > E yields very precise ωa

N(t) = N0(E) exp

(
−t

γτµ

)

[1 + A(E) sin(ωat + φ(E))] ,

s]µs [µTime modulo 100
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10
Distribution of counts

versus time

for the 3.6 billion decays

in the 2001

negative muon

data-taking period

F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –

23

The role of σhadronic ...

BNL muon storage ring: r= 7.112 meters, aperture of the beam pipe 90 mm, field 1.45 Tesla, momentum of the muon
pµ = 3.094 GeV/c (see http://www.g-2.bnl.gov/)

F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –

19

muon storage ring and the measured positron energy provides the direction of the
muon spin.

The number of decay positrons with energy greater than E emitted at time t after
muons are injected into the storage ring is

N(t) = N0(E) exp
⇤
�t/�⇥µ

⌅ �
1 + A(E) sin(⌅a t + ⇤(E))

⇥
,

� N0(E) is a normalization factor, � ⇥µ the muon life time, � A(E) is the asymmetry
factor for positrons of energy greater than E.

� exponential decay modulated by the g � 2 angular frequency

� angular frequency ⌅a neatly determined from the time distribution of the decay
positrons observed with the electromagnetic calorimeters

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 43

[ BNL web page,   g-2  collaboration ] 

Muon g−2: experiment

! The anomalous magnetic moment of muon has also been studied
extensively in both experiment and theory.

! Experiments using muon storage ring started at CERN in 1960’s. The latest
experiment was conducted at BNL in E821 experiment.

 100  150  200  250  300  350  400
(aµ - 11659000) x 10-10

Theory
Experiment

BNL average
BNL 2001 µ-BNL 2000 µ+BNL 1999 µ+BNL 1998 µ+

BNL 1997 µ+
CERN average

CERN µ-
CERN µ+

! Latest world average of the measured aµ:

aµ[exp] = 116 592 089 (63)× 10−11 [0.54ppm]
Bennett, et al., Phys. Rev. D73, 072003 (2006)

Roberts, Chinese Phys. C 34, 741 (2010)
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[ Aoyama, LAT15]139



Recipe of a g-2 measurement

1. Prepare a polarized muon
beam from P-violating 
pion decay

1. Store in a magnetic field 
(let muon spin precessed)

2. Measure positron from P-
violating muon decay
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[ Slide from T. Mibe, L. Roberts ] 

Magic momentum, γ=30 (p= 3 GeV/c),  



Positron time spectrum in BNL E821
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Shimming successfully completed  in2016

142

50 
ppm

1400 
ppm

Oct 2015 Aug 2016 Goal

Shimming goal achieved with DB < ±25 ppm ✓

§ 10 months of align and optimize our shim knobs:
– 72 pole pieces
– 800 wedge shims
– 9000 iron shim foils
– ...

Slide by P. Winter (ANL)
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Resonant Laser Ionization of Muonium (~106 µ+/s)

Graphite/SiC target

(20 mm)

3 GeV proton beam

( 333 uA)

Surface muon beam 

(28 MeV/c, 3x108/s)

Muonium Production 

(300 K ~ 25 meV⇒2.3 keV/c)

Silicon
Tracker

66 cm

Super Precision Storage Magnet

(3T, ~1ppm local precision)

Δ(g-2) =    0.1ppm

EDM   � 10-21 e�cm
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Sub-percent accuracy on Physical point

n now adding on-physical point (Mπ=135 MeV), 
2 lattice spacing  a-1 = 1.7 and 2.4 GeV,  V~(5.5 fm)3  !
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6

Simplest Matrix Elements:  fπ and fK

s̄

K+

u

Kl2
leptons

( %)

( . )e

63

1 6 10e
5

#

n o

o

n
+

+ -

f
:

70 80 90 100 110 120 130 140 150

2000 quench 137.0(11.0)

2007 127.0( 4.0)

2008 124.1( 7.8)

2010 124.0( 5.4)

2014 130.2( 0.9)

2013 FLAG 130.2( 1.4)

RBC/UKQCD f
:

fK
100 110 120 130 140 150 160 170

2000 quench 156.0( 8.0)

2007 157.0( 5.0)

2008 149.6( 7.3)

2010 149.0( 4.5)

2014 155.5( 0.8)

2013 FLAG 156.3( 0.9)

RBC/UKQCD fK

• Inputs are mπ, mK and m�

• Use SU(2) ChPT to extrapolate

• Now have ensembles with essentially 
physical quark masses (few percent) 
arXiv:1411.7017 (RBC-UKQCD)

• fπ and fK are predictions

[ R. Mawhinney ] 



DI = ½  K à p p matrix elements

n Vary time separation between HW and pp operator.
n Show data for all K – HW separations tQ - tK ³ 6

and   tpp - tK = 10, 12, 14, 16 and 18.
n Fit correlators with tpp - tQ ³ 4
n Obtain consistent results for tpp - tQ ³ 3 or 5

Q2

OppHW

Q6

[Dominant contribution to Re(A0)]
[Dominant contribu9on to Im(A0)]

HW
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SM value of Re(e ¢/e)

n Im(A0), Im(A2), d0 and d2 from lattice QCD

n Re(A2) and Re(A0) from measured decay rates

n |e | = 2.228(0.011) x 10-3 from experiment

n arg(e) = arctan(2DMK/GS) = 42.52o (Bell-Steinberger relation)

n �0 determined from phenomenology changes �’/� very small amount 

=  (1.38 ± 5.15stat ± 4.59sys ) x 10-4

Expt:  =   (16.6 ± 2.3) x 10-4 [2.1 s difference]
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n O(imp) has smaller error
O(appx) need to be cheap & not to be too 
accurate 
NG suppresses the bulk part of noise cheaply

Expensive  :  infrequently measured Cheap   :  frequently measured 

Lattice 
Symmetry

Covariant Approximation Averaging ( CAA ) 
a new class of Error reduction techniques

[ Blum, TI, Shintani PRD 88 (2013) 094503 ]

Original

unbiased
imporved

ensemble

ensemble 

e

e

+

New bias-free estimator even without covariant
approximation by a stochastic choice of source
location for the exact/rest computation is now
available  :     Appendix D  of  arXiv:1402.0244 
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Examples of Covariant Approximations 
(contd.)

n All Mode Averaging
AMA
Sloppy CG  or
Polynomial 
approximations

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy control :
• low mode part : # of eig-mode
• mid-high mode :  degree of poly.If quark mass is heavy, e.g. ~ strange, 

low mode isolation may be unneccesary 149


